期刊文献+

Shilnikov sense chaos in a simple three-dimensional system

Shilnikov sense chaos in a simple three-dimensional system
原文传递
导出
摘要 The Shilnikov sense Smale horseshoe chaos in a simple 3D nonlinear system is studied. The proportional integral derivative (PID) controller is improved by introducing the quadratic and cubic nonlinearities into the governing equa- tions. For the discussion of chaos, the bifurcate parameter value is selected in a reasonable regime at the requirement of the Shilnikov theorem. The analytic expression of the Shilnikov type homoclinic orbit is accomplished. It depends on the series form of the manifolds surrounding the saddle-focus equilibrium. Then the methodology is extended to research the dynamical behaviours of the simplified solar-wind-driven-magnetosphere-ionosphere system. As is illustrated, the Lyapunov characteristic exponent spectra of the two systems indicate the existence of chaotic attractor under some specific parameter conditions. The Shilnikov sense Smale horseshoe chaos in a simple 3D nonlinear system is studied. The proportional integral derivative (PID) controller is improved by introducing the quadratic and cubic nonlinearities into the governing equa- tions. For the discussion of chaos, the bifurcate parameter value is selected in a reasonable regime at the requirement of the Shilnikov theorem. The analytic expression of the Shilnikov type homoclinic orbit is accomplished. It depends on the series form of the manifolds surrounding the saddle-focus equilibrium. Then the methodology is extended to research the dynamical behaviours of the simplified solar-wind-driven-magnetosphere-ionosphere system. As is illustrated, the Lyapunov characteristic exponent spectra of the two systems indicate the existence of chaotic attractor under some specific parameter conditions.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第3期207-216,共10页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 10872141)
关键词 CHAOS Shilnikov theorem homoclinic orbit MANIFOLD chaos, Shilnikov theorem, homoclinic orbit, manifold
  • 相关文献

参考文献16

  • 1Shilnikov L P 1970 Math. USSR-Sbornik 10 91.
  • 2Zhang Q C, Tian R L and Wang W 2008 Acta Phys. Sin. 57 2799.
  • 3Zhou T S, Chen G R and Yang Q G 2004 Chaos, Solitons and Fractals 19 985.
  • 4Li Z, Chen G R and Halang W A 2004 Information Sciences 165 235.
  • 5Genesio R, Innocenti G and Gualdani F 2008 Phys. Lett. A 372 1799.
  • 6Xu P C and Jing Z J 2000 Chaos, Solitons and Fractals 11 853.
  • 7Mikhlin Y V 2000 J. Sound Vib. 230 971.
  • 8Vakakis A F and Azeez M F A 1998 Nonlinear Dynam. 15 245.
  • 9Li Y H and Zhu S M 2006 Chaos, Solitons and Fractals 29 1155.
  • 10Silva C P 1993 IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 40 675.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部