期刊文献+

Z箍缩X射线在金属表面产生电荷分离现象 被引量:1

Experimental investigation on charge separation on metals irradiated by Z-pinch produced X-ray
下载PDF
导出
摘要 以"阳"加速器(1 MA,80 ns)驱动的Z箍缩等离子体为X射线源研究X射线加载下金属表面出现的电荷分离现象,Z箍缩负载为16根直径5μm的钨丝组成的丝阵,丝阵半径3 mm。强度107W/cm2、半高宽30 ns的软X射线脉冲通过直径5 mm的限光孔辐照半径30 mm、厚3 mm的铜盘中心,在金属表面产生了脉宽相近,幅值kV的电势。测量了该电势沿金属表面的分布,观测到微弱的调制现象。电势的极性表明电子主要沿金属表面运动而不是垂直表面运动,这表明热电效应是造成电荷分离的主要机制。入射X射线强度较弱时,电子的个体行为——光电效应、康普顿效应占主导;当入射强度较大时,弱关联的集体行为——热效应占主导;进一步增大入射X射线强度将出现强关联的集体行为——电荷密度调制状态。 The measurement of charge separation potentials of metal targets irradiated by 107 W/cm^2 , 30 ns X-ray pulses produced by Z pinch on "Yang" accelerator (1 MA, 80 ns) shows kilovolt target potentials existing for 40 ns. The pinch load was tungsten wire array (3 mm in radius) consisting of 16 wires with a radius of 5μm. The measurement also gives the distribution of potentials on the targets. The polarity of the potential indicates that the electrons move along target surfaces, not along the normal direction. The experimental results show that thermoelectric effect is the main mechanism causing this charge separation. The conclusions reveal that, electrons' individual behavior including photoelectric effect and Compton effect dominates when targets are irradiated by weak X-ray; for intense X-ray incidence weak correlation collective behavior (thermoelectric effect) dominates for ultra-intense X-ray incidence strong correlation collective behavior (charge density modulation state) appears.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2010年第3期679-682,共4页 High Power Laser and Particle Beams
基金 国家自然科学基金重点项目(10635050)
关键词 X射线 电荷分离 热电效应 Z箍缩 X-ray charge separation thermoelectric effect Z-pinch
  • 相关文献

参考文献8

  • 1Pearlman J S, Dahlbacka G H. Charge separation and target voltages in laser-produced plasmas[J]. Appl Phys Lett, 1977, 31(7) : 414 -417.
  • 2Hauer A, Mason R J. Return current heating and implosion of cylindrical CO2 laser-driven targets[J]. Phys Rev Lett, 1983, 51(6):459- 462.
  • 3Beg F N, Clark E L, Wei M S, et al. High-intensity-laser-driven Z pinches[J]. Phys Rev Lett, 2004, 92:095001.
  • 4Stamper J A, Papadopoulos K, Sudan R N, et al. Spontaneous magnetic fields in laser-produced plasmas[J]. PhysRev Lett, 1971, 26(17) : 1012-1015.
  • 5Carron N J, Longmire C L. Electromagnetic pulse produced by obliquely incident X rays[J]. IEEE Trans Nucl Sci, 1976, 23(6):1897- 1902.
  • 6Bessarab A V, Martynenko S P, Prudkoi N A. Experimental study of electromagnetic radiation from a faster-than light vacuum macroscopic source[J]. Radiation Physics and Chemistry, 2006, 75 : 825-831.
  • 7程引会,周辉,李宝忠,陈明,吴伟,乔登江.光电子发射引起的柱腔内系统电磁脉冲的模拟[J].强激光与粒子束,2004,16(8):1029-1032. 被引量:24
  • 8Bessarab A V, Gorbunov A A, Martynenko S P. Faster-than-light EMP source initiated by short X-ray pulse of laser plasma[J]. IEEE Trans on Plasma Science, 2004, 32(3) : 1400-1403.

二级参考文献8

  • 1Higgins D F, Lee K S H, Marin L. System-generated EMP [J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 14-22.
  • 2Carron N J, Longmire L. Scaling behavior of the time-dependent SGEMP boundary layer [J]. IEEE Transactions on Nuclear Science, 1978, 25(6):1329-1335.
  • 3Holland R. Comparison of FDTD particle pushing and direct differencing of Boltzman's equation for SGEMP problem [J]. IEEE Trans EMC, 1995, 37(3):433-442.
  • 4Taflove A. Computational electrodynamics: The finite difference time domain method [M]. Artech House, 1995.
  • 5Dawson J M.Particle simulation of plasmas [J]. Rev Mod Phys, 1983,55(2):403-447.
  • 6Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: Adam Hilger, 1991.
  • 7周辉,李宝忠,王立君,陈雨生.不同注量X射线系统电磁脉冲响应的数值计算[J].计算物理,1999,16(2):157-157. 被引量:17
  • 8周辉,程引会,李宝忠,吴伟.系统电磁脉冲边界层准稳态特性研究[J].强激光与粒子束,2001,13(1):72-75. 被引量:7

共引文献23

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部