期刊文献+

应用Rényi熵的显著图生成与目标探测 被引量:3

Rényi entropy-based saliency map generation and target detection
下载PDF
导出
摘要 为了在复杂的地面场景中实现准确的自动目标检测,分析了地面场景图像经二维加窗的伪Wigner-Ville分布(PWVD)后,归一化的Rényi熵与其出现概率间存在的基于e指数的统计特性,以及人造目标的出现引起的地面场景中Rényi熵的统计特性变化,提出了一种新的基于Rényi熵的显著图生成和目标探测方法。对Renyi熵图像进行了均值滤波,然后滤波前后的图像相减得到熵残余图像,并经过高斯滤波获得显著图,最终通过简便的阈值分割,完成目标探测。实验结果表明,该方法对8幅不同场景图像中共计14个目标的探测概率为100%,虚警概率不大于7.1%。与传统方法相比,本文提出的方法能够更为有效地检测复杂地面背景中的军事目标。 For improving the accuracy of automatic target detection in cgmplex ground scenes,the statistical property between the Renyi entropy and its occurrence probability of images calculated through the Pseudo Wigner-Ville Distribution (PWVD) with a two dimension window was analyzed based on exponential function. Then the change of the statistical property caused by the appearing of man-made targets is investigated. The methods of saliency map generation and target detection based on Renyi entropy are proposed. Firstly, the image of Renyi entropy is smoothed by the average filter. Then, the image of residual Renyi entropy is obtained by the subtraction of fore--and-aft filter images, and the saliency map is obtained by Gaussian filter. Finally, the target detection is completed by segmenting the saliency map with a simple and convenient threshold method. Experimental results demonstrate that the detection probability and false alarm probability of the method are 100 % and less than 7. 1 respectively for 14 targets in 8 images. In comparison with traditional methods, the proposed method can detect the military targets from complex ground scenes effectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第3期723-731,共9页 Optics and Precision Engineering
基金 国防预研基金资助项目(No.9140A01040307HT0125)
关键词 伪Wigner-Ville分布 Rényi熵 显著图 目标探测 pseudo Wigner-Ville distribution Renyi entropy saliency map target detection
  • 相关文献

参考文献21

  • 1丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 2林玉池,崔彦平,黄银国.复杂背景下边缘提取与目标识别方法研究[J].光学精密工程,2006,14(3):509-514. 被引量:88
  • 3宋燕星,袁峰,丁振良,孙春凤.使用形态Haar小波法检测目标感兴趣区域[J].光学精密工程,2009,17(7):1752-1758. 被引量:7
  • 4靳薇,张建奇,张翔.基于视觉注意力模型的红外目标检测[J].红外技术,2007,29(12):720-723. 被引量:11
  • 5ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998,20(11) : 1254-1259.
  • 6ITTI L, KOCH C. A saliency-based search mechanism for overt and covert shifts of visual attention [J]. Vision Research, 2000,40 : 1489-1506.
  • 7WALTHER D, KOCH C. Modeling attention to salient proto-object[J]. Neural Network, 2006,19 : 1395-1407.
  • 8SIAGIAN C, ITTI L. Rapid biologically-inspired scene classification using features shared with visual attention[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2007,29(2) :300-312.
  • 9ACKERMAN C, ITTI L. Robot steering with spectral image information[J]. IEEE Trans. Robotics, 2005,21(2) :247-251.
  • 10HOU X D, ZHANG L Q. Saliency detection: a spectral residual approach[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2007,2007 : 1-8.

二级参考文献53

共引文献136

同被引文献33

  • 1杨波,徐光祐.纹理相似性度量研究及基于纹理特征的图象检索[J].自动化学报,2004,30(6):991-998. 被引量:6
  • 2张兆伟,马治国,钱超,喻志成.红外图像中海天线的提取[J].海军工程大学学报,2005,17(3):97-99. 被引量:8
  • 3裴继红 谢维信 刘上乾 等.用模糊数学方法识别舰船红外成像目标.红外与毫米波学报,1995,14(2):93-100.
  • 4SUMIMOTO T, KURAMOTO K.Detection of a particular object from environmental images under various conditions .ISIE’2000, Cholula, Puebla, Mexico:590-595.
  • 5HAARST T,VINCENT A,GROEN F.Color as an attribute for automated detection in maritime environments .Proceeding of 12th International Conference on Information Fusion, Seattle, WA, USA, 2009:1679-1686.
  • 6SERGIY F, DMITRY G.Detection and tracking of marine vehicles in video[J].IEEE,2008,12:1-4.
  • 7SANTHALIA G K, NITIN S, SANATYA S.A method to extract future warships in complex sea-sky background which may be virtually invisible .2009 Third Asia International Conference on Modelling & Simulation,2009:533-539.
  • 8COSMIN G,NICOLAI P,MICHEL A.Westenberg Contour and boundary detection improved by surround suppression of texture edges[J].Image and Vision Computing,2004,22:609-622.
  • 9GUO S,PRIDMORE T,KONG Y,et al..An improved hough transform voting scheme utilizing surround suppression[J].Pattern Recognition Letters,2009,30:1241-1252.
  • 10DORIN C, PETER M.Mean Shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.

引证文献3

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部