期刊文献+

Interval Valued (∈,∈ ∨q)-Fuzzy Filters of MTL-Algebras 被引量:1

Interval Valued (∈,∈ ∨q)-Fuzzy Filters of MTL-Algebras
下载PDF
导出
摘要 The concepts of interval valued (∈,∈ ∨q)-fuzzy Boolean, MV - and G- filters in a MTL-algebra are introduced. The properties of these generalized fuzzy filters are studied and in particular, the relationships between these fuzzy filters in an MTL-algebra are investigated. The concepts of interval valued (∈,∈ ∨q)-fuzzy Boolean, MV - and G- filters in a MTL-algebra are introduced. The properties of these generalized fuzzy filters are studied and in particular, the relationships between these fuzzy filters in an MTL-algebra are investigated.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期265-276,共12页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.60875034) the Key Science Foundation of Education Committee of Hubei Province (Grant Nos.D20092901 D20092907) the Natural Science Foundation of Hubei Province (Grant No.2009CDB340)
关键词 MTL-algebra filter interval valued (∈ ∨q)-fuzzy (Boolean MV- and G-) filters. MTL-algebra filter interval valued (∈,∈ ∨q)-fuzzy (Boolean, MV- and G-) filters.
  • 相关文献

参考文献15

  • 1BHAKAT S K. (∈, ∈ Vq)-fuzzy normal, quasinormal and maximal subgroups [J]. Fuzzy Sets and Systems, 2000, 112(2): 299-312.
  • 2BHAKAT S K, DAS P. (∈, ∈ Vq)-fuzzy subgroup [J]. Fuzzy Sets and Systems, 1996, 80(3): 359-368.
  • 3DAVVAZ B. (∈, ∈ Vq)-fuzzy subnear-rings and ideals [J]. Soft Computing, 2006, 10: 206-211.
  • 4ESTEVA F, GODO L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms [J]. Fuzzy Sets and Systems, 2001, 124(3): 271-288.
  • 5HAJEK P. Metamathematics of Fuzzy Logic [M]. Kluwer Academic Publishers, Dordrecht, 1998.
  • 6JUN Y B, XU Yang, ZHANG Xiaohong. Fuzzy filiters of MTL-algebras [J]. Inform. Sci., 2005, 175(1-2): 120-138.
  • 7KIM K H, ZHANG Qun, JUN Y B. On fuzzy filters of MTL-algebras [J]. J. Fuzzy Math., 2002, 10(4): 981-989.
  • 8PU Paoming, LIU Yingming. Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence [J]. J. Math. Anal. Appl., 1980, 76(2): 571-599.
  • 9ROSENFELD A. Fuzzy groups [J]. J. Math. Anal. Appl., 1971, 35: 512-517.
  • 10TURUNEN E. BL-algebras of basic fuzzy logic [J]. Mathware Soft Comput., 1999, 6(1): 49-61.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部