期刊文献+

一类离散功能性反应模型的混沌跟踪控制 被引量:2

Tracking control of chaos of a class of discrete functional response model
原文传递
导出
摘要 针对一类具有功能性反应的捕食与被捕食系统,采用Lyapunov指数方法验证了混沌现象的存在.采用混沌跟踪控制原理设计控制器,控制系统存在的混沌现象使得种群稳定到正不动点轨道和给定周期轨道上,从而消除系统中存在的混沌现象.仿真结果验证了控制器的有效性. To a class of discrete functional response predator-prey models,the presence of chaos is validated by computing Lyapunov exponent measure method. A controller based on the principle of tracking control of chaos is designed to stabilize chaotic trajectories to unstable fixed points and given period trajectories,and chaotic phenomena in the system are eliminated. Simulation results show the effectiveness of the designed controller.
出处 《控制与决策》 EI CSCD 北大核心 2010年第3期466-468,472,共4页 Control and Decision
基金 国家自然科学基金项目(62074009)
关键词 功能性反应 捕食与被捕食系统 混沌 LYAPUNOV指数 混沌跟踪控制 Functional response Discrete predator-prey model Chaos Lyapunov exponent Tracking control of chaos
  • 相关文献

参考文献9

  • 1Neubert M G, Kot M. The subcritical collapse of predator populations in discrete-time predator-prey models[J]. Mathematical Biosciences, 1992, 110 (1) 45-66.
  • 2Summers D, Cranford J G, Healey B P. Chaos in periodically forced discrete-time ecosystem models[J]. Chaos, Solitons and Fractals, 2000, 11 (14): 2331- 2342.
  • 3Jing Z J, Yang J P. Bifurcation and chaos in discretetime predator-prey system [ J ]. Chaos, Solitons and Fractals, 2006, 27(1): 259-277.
  • 4Zhang Y, Zhang Q L, Zhao L C, et al. Dynamical behaviors and chaos control in a discrete functional response model[J]. Chaos, Solitons and Fractals, 2007, 34(4) :1318-1327.
  • 5Xu H B, Wang G R, Chen S G. Controlling chaos by a modified straight-line stabilization method [ J ]. The European Physical J, 2001, 22(1): 65-69.
  • 6Gomes A A, Manica E, Varriale M C. Applications of chaos control techniques to a three-species food chain [J]. Chaos, Solitons and Fractals, 2008, 35(3): 432- 441.
  • 7张悦,张庆灵,赵立纯,刘佩勇.一类种群增长模型的反馈线性化控制[J].东北大学学报(自然科学版),2005,26(10):926-929. 被引量:8
  • 8Luo X S, Chen G R, Wang B H, et al. Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems[J]. Chaos, Solitons and Fractals, 2003, 18(4) :775-783.
  • 9Hassan K K. Nonlinear Systems[M]. 2nd ed. New Jersey: Prentice Hall, 1996.

二级参考文献7

  • 1Smith M J. Mathematical ideas in biology[M]. Cambridge: Cambridge University Press, 1968.35-47.
  • 2Tang S Y, Chen L S. Chaos in functional response host-parasitoid ecosystem models[J]. Chaos, Solitons and Fractals, 2002,13:875-884.
  • 3Parker T S, Chua L O. Practical numerical algorithms for chaotic systems[M]. New York: Springer, 1989.66-71.
  • 4Rasband S N. Chaotic dynamics of nonlinear system[M]. New York: Wiley/Interscience, 1990.187-195.
  • 5Isidori A. Nonlinear control systems[M]. 3rd ed. New York: Springer, 1995.137-218.
  • 6赵立纯,张庆灵,杨启昌.具有周期系数的单种群模型的最优脉冲控制[J].东北大学学报(自然科学版),2002,23(11):1040-1043. 被引量:4
  • 7YuChang,Xu-dongLi.Dynamical Behaviors in a Two-dimensional Map[J].Acta Mathematicae Applicatae Sinica,2003,19(4):663-676. 被引量:1

共引文献7

同被引文献21

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部