期刊文献+

相干区域长轴的快速估计方法及其应用 被引量:4

Fast Approach to Estimate the Longest Axis in Coherence Region and Its Applications
下载PDF
导出
摘要 相干区域的长轴作为复相干系数间最长的连线,反映了复干涉相干系数线性变化趋势,因此在基于相干散射模型的极化干涉森林应用中具有重要研究意义。针对遍历搜索方法估计长轴效率低、精度受采样间隔限制的不足,该文提出一种相干区域长轴的快速估计方法。该方法将相干区域外切矩形的切点连线作为长轴的初始估计,利用逼近技术求解长轴。为提高森林高度估计性能,该文还提出一种应用长轴信息反演森林参数的方法。松树林的极化干涉仿真数据的结果表明,快速估计方法运行时间远低于遍历搜索方法,且长轴估计精度高于遍历搜索方法,利用长轴信息估计的森林高度更接近于仿真森林高度。 The longest axis in coherence region,which gives the largest distance between any two coherences,is significant in forestry applications using coherence scattering model,because it reflects the linear variation of complex coherences with the polarization states.To improve the efficiency and accuracy of traversal search,a fast approach is proposed to estimate longest axis in this paper.It uses the line segment of the tangent points of the rectangle externally tangent to coherence region to get the initial estimation for the longest axis.Nest,it obtains the longest axis using the approximation technique.To improve forest height estimation,a forest parameter inversion technique using the longest axis is presented.Results of simulated data for pine forest show the fast approach consumes much less computation time and gives better estimations for the longest axis than traversal search method.Results also show that the introduction of longest axis in forest parameter inversion yields closer estimations to the true forest height.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第3期548-553,共6页 Journal of Electronics & Information Technology
基金 中国科学院知识创新工程青年人才领域前沿项目资助课题
关键词 极化干涉合成孔径雷达 森林参数反演 相干区域 相干散射模型 Polarimetric interferometric SAR Forest parameter inversion Coherence region Coherence scattering model
  • 相关文献

参考文献13

  • 1郭华东,李新武,王长林,李震.极化干涉雷达遥感机制及作用[J].遥感学报,2002,6(6):401-405. 被引量:17
  • 2陈兵,徐绍剑,张平.单基线PolInSAR反演算法研究[J].电子与信息学报,2008,30(7):1744-1746. 被引量:4
  • 3Papathanassiou K P, Kugler F, and Lee S, et al.. Recent advances in polarimetric SAR interferometry for forest parameter estimation[C]. IEEE Radar Conference, Rome, Italy, 26-30 May, 2008: 1-6.
  • 4Papathanassiou K P and Cloude S R. Single-baseline polarimetric SAR intefferometry[J]. IEEE Transactions on Geoscisnce and Remote Sensing, 2001, 39(11): 2352-2363.
  • 5Zhou Guang-yi, Xiong Tao, and Yang Jian, et al.. Forest height inversion based on polarimetric SAR inteferometry[C]. International Conference on Signal Processing, Beijing, China, 26-29 October, 2008: 2473-2476.
  • 6Cloude S R and Papathanassiou K P, Three-stage inversion process for polarimetric SAR interferometry[J]. IEE Proceedings Radar, Sonar and Navigation, 2003, 150(3): 125-134.
  • 7Tobias M, Florian K, and Papathanassiou K P, et al.. Forest and the random volume over ground-nature and effect of 3 possible error types[C]. European Conference on Synthetic Aperture Radar Proceedings, Dresden, Germany, 16-18 May 2006: 13.4.
  • 8Tan Lu-lu and Yang Ru-liang. Investigations on tree height retrieval with polarimetric SAR interferometry[C]. Geoscienees and Remote Sensing Symposium, Boston, USA, 7-11 July, 2008: 546-549.
  • 9Mark T, Jeffreu O, and Thomas F, et al.. Phase diversity: A decomposition for vegetation parameter estimation using polarimetric SAR Interferometry[C]. European Conference on Synthetic Aperture Radar. Cologne, Germany, 4-6 June 2002:721 724.
  • 10Maxim N, Andreas R, and Ferro-Famil L. Pol-InSAl:t coherence set theory and application[C]. European Conference on Synthetic Aperture Radar Proceedings, Dresden, Germany, 16-18 May 2006, ID. 037.

二级参考文献1

共引文献19

同被引文献34

  • 1LUO HuanMin 1,LI XiaoWen 1,2,CHEN ErXue 3,CHENG Jian 4 & CAO ChunXiang 21 Institute of Geo-Spatial Information Science and Technology,University of Electronic Science and Technology of China,Chengdu 610054,China,2 State Key Laboratory of Remote Sensing Science,Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University,Beijing 100101,China,3Institute of Forest Resources Information Technique of Chinese Academy of Forestry,Beijing 100091,China,4 School of Electronic Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China.Analysis of forest backscattering characteristics based on polarization coherence tomography[J].Science China(Technological Sciences),2010,53(S1):166-175. 被引量:2
  • 2杨存建,刘纪远,黄河,许辉熙,党承林.热带森林植被生物量与遥感地学数据之间的相关性分析[J].地理研究,2005,24(3):473-479. 被引量:35
  • 3王臣立,郭治兴,牛铮,林文鹏.热带人工林生物物理参数及生物量对RADARSAT SAR信号响应研究[J].生态环境,2006,15(1):115-119. 被引量:9
  • 4刘春生,荆凯,杨秋.采煤机滚筒截割记忆程控的灰关联度计算新方法[J].煤炭学报,2006,31(5):666-669. 被引量:15
  • 5Cloude S R and Papathanassiou K P. Three-stage inversionprocess for polarimetric SAR interferometry [J]. IEEProceedings-Radar^ Sonar and Navigation, 2003, 150(3):125-134.
  • 6Lopez-Martinez C and Alonso-Gonzalez A. Assessment andestimation of the RVoG model in polarimetric SARinterferometry [J]. IEEE Transactions on Geoscience andRemote Sensing, 2013,PP(99): 1-16.
  • 7Li Zhen and Guo Ming. A new three-stage inversionprocedure of forest height with the improved temporaldecorrelation RVoG model[Cj. IEEE International Geoscienceand Remote Sensing Symposium (IGARSS), Munich,Germany, 2012: 5141-5X44.
  • 8Tabb M, Flynn T, and Carande R. Full maximum likelihoodinversion of PolInSAR scattering models [C]. IEEEInternational Geoscience and Remote Sensing Symposium(IGARSS), Anchorage, AK, USA, 2004: 1232-1235.
  • 9Nghia P M, Zou Bin, and Cheng Yan. Forest heightestimation from PolInSAR image using adaptivedecomposition method[C]. IEEE 11th InternationalConference on Signal Processing (ICSP), Beijing, China, 2012:1830-1834.
  • 10L6pez-Martfnez C and Papathanassiou K P. Cancellation ofscattering mechanisms in PolInSAR: application tounderlying topography estimation[J]. IEEE Transactions onGeoscience and Remote Sensing, 2013,51(2): 953-965.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部