期刊文献+

图像分割中局部能量驱动的快速主动轮廓模型 被引量:5

A fast active contour model for image segmentanon driven by local region energy
原文传递
导出
摘要 为了解决图像对象灰度分布不一致性的分割难题,提高图像分割速度,提出了一个全新的快速主动轮廓模型。它由曲线周围局部的统计信息驱动曲线发生形变演化,并使用图像中的边缘信息来引导曲线的演化方向。模型中,根据区域模板与演化曲线共同定义的局部统计信息创建数据拟合项,并应用水平集方法求解曲线的演化。对合成图像和医学图像的实验结果表明,本文提出的分割模型可以同时分割多个灰度不一致的对象,分割速度快,结果稳定,对噪声具有很好的鲁棒性。 In order to overcome the difficulties caused by intensities in-homogeneity and improve the speed of image segmentation,we propose a novel active contour model in which the curve evolution is driven by the statistical information around the curve,and the curve is forced to march toward the boundary under the alignment term.In our model,the data fitting term,which is constructed by the local information between the curve and mask,is incorporated into a variational level set formulation to be solved.Experiment results on the synthetic and medical images demonstrate that our new active contour model can segment multi-objects with intensity in-homogeneity at a faster convergency speed,and it is robust to noise.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第1期140-143,共4页 Journal of Optoelectronics·Laser
基金 国家"863"高技术研究发展计划资助项目(2006AA02Z346) 广东省自然科学基金团队资助项目(6200171) 佛山市禅城区产学研资助项目(2008B1034)
关键词 图像分割 灰度不一致 水平集方法 主动轮廓模型 局部区域能量 image segmentation intensity inhomogeneity level set method active contour model localizing region energy
  • 相关文献

参考文献8

  • 1Chan T,Vese L. Active contours without edge[J]. IEEE Transaction on Image Processing,2001,10(2) :266-277.
  • 2Vese L,Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah rnodel[J]. International Journal of Computer Vision,2002,50(3) :271-293.
  • 3Tsai A,Yezzi A,Willsky A S. Curve evolution implementation of the mumford-shah functional for image segmentation,denosing, interpolation,and magnification[J]. IEEE Transaction on Image Processing, 2001,10:1169-1186.
  • 4祝世平,夏曦,张庆荣.一种基于逐点阈值分割的图像边缘检测方法[J].光电子.激光,2008,19(10):1383-1387. 被引量:9
  • 5刘应乾,曹茂永,孙农亮.基于活动轮廓和Gabor滤波器的细胞分割[J].光电子.激光,2007,18(10):1255-1259. 被引量:6
  • 6An Jungha, Rousson Mikael, Chen-yang Xu. λ-convergence approximation to piecewise smooth medical segmentation[A]. Proc: Medical Image Computing[C]. 2007,4792:495-502.
  • 7Alliney S. Digital filters as absolute norm reguiarizers[J]. IEEE Transactions on Signal Prooessing,1992,40(6) :1548-1562. .
  • 8LI Chun-ming,XU Chen-yang,GUI Cang-feng,et al. LeVel set without re-initialization: a new variational formulation [A]. Conference on Computer Vision and Pattern Recognition[C]. 2005,05:1063-1069.

二级参考文献17

共引文献13

同被引文献27

  • 1罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报,2006,11(3):301-309. 被引量:34
  • 2郑相锋,王庆,牛晓光.灰度形态学提取焊接熔池图像边缘技术[J].焊接学报,2007,28(1):105-108. 被引量:10
  • 3Vicent Caselles,Ron Kimmel,Guillermo Sapiro.Geodesic Active Contours[J].International Journal of Computer Vision.1997(1)
  • 4Michael Kass,Andrew Witkin,Demetri Terzopoulos.Snakes: Active contour models[J].International Journal of Computer Vision.1988(4)
  • 5Shigang Liu,Yali Peng.A local region-based Chan–Vese model for image segmentation[J].Pattern Recognition.2012(7)
  • 6Kaihua Zhang,Huihui Song,Lei Zhang.Active contours driven by local image fitting energy[J].Pattern Recognition.2009(4)
  • 7Li Wang,Chunming Li,Quansen Sun,Deshen Xia,Chiu-Yen Kao.Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J].Computerized Medical Imaging and Graphics.2009(7)
  • 8Li Wang,Lei He,Arabinda Mishra,Chunming Li.Active contours driven by local Gaussian distribution fitting energy[J].Signal Processing.2009(12)
  • 9Xiao-Feng Wang,De-Shuang Huang,Huan Xu.An efficient local Chan–Vese model for image segmentation[J].Pattern Recognition.2009(3)
  • 10李小毛,王智峰,唐延东.基于形状保持主动轮廓模型长直条的检测[J].计算机工程,2008,34(1):53-55. 被引量:5

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部