期刊文献+

基于侧抑制的红外图像自适应预处理 被引量:4

Adaptive infrared image pre-processing based on lateral inhibition
原文传递
导出
摘要 针对复杂海空背景下的红外图像,提出了一种基于侧抑制的红外图像自适应预处理的方法。根据不同背景图像方差加权信息熵的变化,建立了方差加权信息熵与侧抑制网络作用调节因子的对应关系。通过对不同实际场景自适应地调整侧抑制网络作用强度,实现了不同背景条件下实时红外序列图像的自适应处理。仿真实验表明,该方法能有效提高杂波背景下图像的信杂比,具有突出目标特征和适应复杂背景的能力。 According to the properties of infrared image under the complex sea and air background, an a- daptive infrared image pre-processing method based on lateral inhibition is proposed. By making use of the changes of variance weighted information entropy in images with different background, the correlation between variance weighted information entropy and appropriate function adjustment factors of the lateral inhibition network is established. Therefore,the role of lateral inhibition strength is adjusted adaptively for different actual scenes, and an adaptive processing method for reabtime infrared sequence image un- der different background condition is realized. Simulation experiments show that the method can effectively improve the SCR performance of infrared images, and has the ability of identifying the detail of target characteristics and adapting to complex backgrounds.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第4期606-609,共4页 Journal of Optoelectronics·Laser
基金 北京航空航天大学青年创新基金项目
关键词 侧抑制 复杂背景 方差加权信息熵 自适应 lateral inhibition complex background variance weighted information entropy adaptive
  • 相关文献

参考文献13

二级参考文献69

共引文献289

同被引文献40

  • 1白晓东,刘代军.关于精确制导武器制导技术演示验证的思考[J].航空兵器,2004,11(5):40-42. 被引量:6
  • 2李丽娟,黄士科,刘珂.一种飞机目标的瞄准点选择方法[J].红外与激光工程,2007,36(1):123-126. 被引量:8
  • 3严高师,毕务忠.基于区域奇异性滤波的小目标检测[J].光学技术,2007,33(2):163-165. 被引量:5
  • 4杨杰,杨磊.基于红外背景复杂程度描述的小目标检测算法[J].红外与激光工程,2007,36(3):382-386. 被引量:25
  • 5Nishikawa T, Yoshida J, Sugiyama T, et al. Concrete crack detection by multiple sequential image filtering[J]. Computer-Aided Civil and Infrastructure Engineering, 2012,27(1) : 29-47.
  • 6Thakur V,Tripathi N. On the way towards efficient enhan- cement of multi-channel underwater images[J]. Interna- tional Journal of Applied Engineering Research, 2010,5 (5) :895-903.
  • 7Padmavathi G, Subashini P, Kumar M M, et al. Compari- son of filters used for underwater image pre-processing [J]. International Journal of Computer Science and Net- work Security, 2010,10(1) : 58-65.
  • 8Celik T, Tjahjadi T. Automatic image equalization and contrast enhancement using Gaussian mixture modeling [J]. Image Processing, IEEE Transactions on, 2012, 21 (1) :145-156.
  • 9Prabhakar C J, Praveen K P. An image based technique for enhancement of underwater images[J]. International Journal of Machine Intelligence, 2012,4(3) : 217-224.
  • 10Czerwinski R N, Jones D L,O'Brien Jr W D. Line and boundary detection in speckle images[J]. ImagePro- cessing, IEEE Transactions on, 1998 ,7(12):1700-1714.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部