期刊文献+

四元数映射z←z^2+c M集多临界点问题研究

Quaternion Mandelbrot sets on mapping z←z^2+c with multiple critical points
下载PDF
导出
摘要 研究了四元数映射z←z2+c的Mandelbrot集(简称M集)在临界点不为0情况下的结构拓扑不变性和裂变演化规律;计算了M集的周期域边界,探讨了四元数M集周期轨道的拓扑规律.通过在M集中参数c的选择构造了四元数Julia集,定性地分析了四元数M集与Julia集之间的对应关系.实验结果表明,四元数M集临界点不唯一,其分形结构随不同临界点呈现出与以往M集不同的结构特点. The quaternion Mandelbrot sets (abbreviated as M sets) on the mapping z←z2+c with multiple critical points are constructed. The topological invariance and the fission evolutions of M sets are investigated,the stability region boundary is calculated,and the topology rules of the cycle orbits are discussed. The quaternion Julia sets are constructed with the parameter c selected from the M sets and the relationship between the quaternion M sets and the Julia sets are analyzed. It can be concluded that the critical points of quaternion M sets are not unique,which lead the M sets to different fractal structures.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第2期283-290,共8页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60573172) 高等学校博士学科点专项科研基金资助项目(20070141014) 辽宁省自然科学基金资助项目(20082165)
关键词 MANDELBROT集 JULIA集 多临界点 四元数 分形 Mandelbrot sets Julia sets multiple critical points quaternion fractal
  • 相关文献

参考文献13

  • 1MANDELBROT B B. The Fractal Geometry of Nature [M]. San Francisco:Freeman W H, 1982.
  • 2PEITGEN H O, SAUPE D. The Science of Fractal Images [M]. Berlin:Springer-Verlag, 1988.
  • 3NORTON A. Generation and display of geometric fractals in 3-D [J]. Computers and Graphics, 1982, 16(3) :61-67.
  • 4GOMATAM J, DOYLE J, STEVES B, etal. Generalization of the Mandelbrot set:quaternionic quadratic maps [J]. Chaos, Solitons and Fractals, 1995, 5(6) :971-986.
  • 5BUCHANAN W, GOMATAM J, BONNIE S. Generalized Mandelbrot sets for meromorphic complex and quaternionic maps [J]. International Journal of Bifurcation and Chaos, 2002, 12(8): 1755-1777.
  • 6SHIZUO N. Dynamics of a family of quadratic maps in the quaternion space [J]. International Journal of Bifurcation and Chaos, 2005, 15(8) :2535-2543.
  • 7MITJA L, MARJETA S, PETER P. Symbolic dynamics in investigation of quaternionic Julia sets [J]. Chaos, Solitons and Fractals, 2005, 24 (5): 1189-1201.
  • 8程锦,谭建荣.基于三元数的三维广义M集表示及其绘制算法[J].计算机学报,2004,27(6):729-735. 被引量:7
  • 9关柯,孔凡让,冯志华,刘志刚,刘维来.四元数分形的生成与研究[J].工程图学学报,2005,26(3):133-136. 被引量:4
  • 10于海,徐喆,朱伟勇.单纯形空间中的四元数分形集的构造与分析[J].东北大学学报(自然科学版),2005,26(1):39-42. 被引量:3

二级参考文献29

  • 1屈鹏展.三元数解析[J].宝鸡文理学院学报(自然科学版),1994,14(2):61-76. 被引量:4
  • 2Terry W. Gintz. Artist,s statement CQUATSF a non-distributive quad algebra for 3D renderings of Mandelbrot and Julia Sets [J]. Computers & Graphics, 2002, 26: 367~370.
  • 3John C Hart, Daniel J Sandin, Louis H Kauffmant. Ray tracing deterministic 3-D fractals [J]. Computer Graphics, 1989, 23: 289~295.
  • 4Norton A. Julia sets in the quaternions [J]. Computers and Graphics, 1989, 23: 267~278.
  • 5肯尼斯. 法尔科内(英) 曾文曲.分形几何-数学基础及其应用[M].沈阳: 东北大学出版社,1996.271-281.
  • 6Estela A Gavosto, James R Miller, John Sheu. Immersive 4D visualization of complex dynamics [A]. In: Proceedings of the 1998 Workshop on New Paradigms in Information Visualization and Manipulation [C]. Washington, D.C., 1998. 62~64.
  • 7John C Hart, Louis H Kauffman, Daniel J Sandin. Interactive visualization of quaternion Julia sets [A]. In: Proceedings of the 1st Conference on Visualization '90 [C]. San Francisco, 1990. 1~10.
  • 8Norton Alan. Julia sets in the quaternions. Computers and Graphics, 1989, 13(2): 267~278
  • 9John C. Hart, Daniel J. Sandin, Louis H. Kauffman. Ray tracing deterministic 3-D fractals. Computer Graphics, 1989, 23(3): 289~296
  • 10John C. Hart, Louis H. Kauffman, Daniel J. Sandin. Interactive visualization of quaternion Julia sets. In: Proceedings of the 1st Conference on Visualization'90, San Francisco, California, 1990, 209~218

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部