期刊文献+

一种遗传蚁群算法的机器人路径规划方法 被引量:49

A Method of Mobile Robotic Path Planning Based on Integrating of GA and ACO
下载PDF
导出
摘要 研究遗传算法和蚁群算法可作为新兴的智能优化算法,在解决多目标、非线性的组合优化问题上表现出了传统优化算法无可比拟的优越性。基于将两种智能优化算法动态融合的思想提出了一种新的遗传蚁群算法(GA-ACO)。与已有的将遗传算子引入蚁群算法的结合方式不同之处在于,GA-ACO算法第一阶段采用了遗传算法生成初始信息素分布,在第二阶段采用蚁群算法求出最优解,从而有效地结合了遗传算法的快速收敛性和蚁群算法的信息正反馈机制。仿真结果表明,在具有深度陷阱的特殊障碍物环境下,应用GA-ACO算法求解机器人路径规划问题可以得到较好的的结果。 As two popular intelligence optimal algorithm, Ant Colony Optimal Algorithm (ACO) and Genetic Algorithm (GA) perform better than traditional optimal algorithms in many fields. Based on the integration of the two algorithms, the paper proposes a kind of GA - ACO Algorithm. Differ from the existent method of inserting genetic operators into ACO, the basic thought of the GAAC algorithm is that, the algorithm uses GA to generate the initial pheromone distribution in the former stage and then uses ACO to work out the final solution in the later stage. By doing so, the merits of the two algorithms can be made the most use of to obtain the efficiency of time and precision. The simulation result indicates that introducing GA - ACO algorithm to mobile robotic path planning problem in obstacle enviroment with deep traps illuminates its efficiency.
出处 《计算机仿真》 CSCD 北大核心 2010年第3期170-174,共5页 Computer Simulation
基金 国家自然科学基金(60674015) 上海市重点学科项目(B504)
关键词 遗传算法 蚁群算法 机器人路径规划 Genetic algorithm Ant colony optimal algorithm Mobile robotic path planning
  • 相关文献

参考文献10

二级参考文献38

  • 1刘丹杰.遗传算法的编码研究[J].甘肃科技,2004,20(6):112-112. 被引量:4
  • 2王常青,操云甫,戴国忠.用双向收敛蚁群算法解作业车间调度问题[J].计算机集成制造系统,2004,10(7):820-824. 被引量:31
  • 3Smith J.Self-adaptation of mutation rates in a steady state genetic algofithm[C].In,proceedings of the third IEEE conference on Evolutionary Computation, Piscataway : IEEE Press, 1996 : 318-323.
  • 4S Baskar.Performance of hybrid real coded genetic algorithms[J].International Journal of Computational Engineering Science,2001;2(4): 583-601.
  • 5Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 6Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 7Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 8Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 9Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 10[日]玄光男 程润伟 等.遗传算法与工程设计[M].北京:科学出版社,2000..

共引文献916

同被引文献418

引证文献49

二级引证文献437

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部