期刊文献+

基于Camshift与Kalman的目标跟踪算法 被引量:5

Object Tracking Based on Camshift and Kalman Filter
下载PDF
导出
摘要 针对目标跟踪复杂的难点,提出了一种比较实用的跟踪方法。采用基于颜色概率分布的Camshift算法进行目标跟踪的同时,引入卡尔曼滤波,并给出模型参数。在目标发生遮挡时,使用卡尔曼滤波对目标运动状态进行估计。实验表明,算法能够对目标进行持续、稳定的跟踪。 Aiming at the difficulties of object tracking, we present a practical tracking method:while using Camshift algorithm based color probability, importing Kalman filter.During objects occlusion, we use Kalman filter to estimate the state of occlusive objects.The experiments prove the algorithm is practical to tracking objects stably.
出处 《微计算机信息》 2010年第9期23-24,51,共3页 Control & Automation
关键词 目标跟踪 CAMSHIFT算法 KALMAN滤波 目标遮挡 Object Tracking Camshift Algorithm Kalman Filter Object Occlusion
  • 相关文献

参考文献6

  • 1K Fukunaga,L D Hostetler.The estimation of the gradient of a density function,with applications in pattern recognition [J].IEEE Transaction on Information Theory(S0018-9448),1975,21(1):32 - 40.
  • 2D Comaniciu, P Meer. Mean shift: A robust approach toward feature space analysis[J].IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828),2002,24(5):603 - 619.
  • 3刘雪,常发亮,王华杰.基于改进Camshift算法的视频对象跟踪方法[J].微计算机信息,2007,23(21):297-298. 被引量:20
  • 4Bradski G R. Computer vision face tracking for use in a perceptual user interface [J]. Intel Technology Journal, 1998,2:214-219.
  • 5Allen John G,Xu Richard Y D, J in jess S. Object tracing using Camshift algorithm and multiple quantized feature spaces [C].Pan-Sydney Area Workshop on Cisual Infromation Processing VIP2003, Sydeny,Australia,2003:1-5.
  • 6D Comaniciu,P Meer.Mean shift:A robust approach toward feature space analysis [J].IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828),2002,24(5):603 - 619.

二级参考文献5

  • 1Comaniciu D,Ramesh V,and Meer R.Real-time tracking of non-rigid objects using mean shift[A].Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition[C],Dublin,Ireland,2000,2:142-149.
  • 2Bradski G R.Computer vision face tracking for use in a perceptual user interface[J].Intel Technology Journal,1998,2:214-219.
  • 3Comaniciu D,Ramesh V,Meer P.Kernel based object tracking[J].IEEE Trans Pattern Analysis Machine Intelligence,2003,25 (5):564-575.
  • 4Caifeng Shan,Yucheng Wei,Tieniu Tan and Frédéric Ojardias.Real time hand tracking by combining particle filtering and mean shift[A].The sixth International Conference on Automatic Face and Gesture Recognition,Seoul,Korea,2004:669-674.
  • 5周志宇,汪亚明,黄文清,曹丽,周海英.基于熵的运动目标检测[J].微计算机信息,2003,19(5):35-36. 被引量:17

共引文献19

同被引文献44

  • 1徐琨,贺昱曜,王卫亚.基于CamShift的自适应颜色空间目标跟踪算法[J].计算机应用,2009,29(3):757-760. 被引量:22
  • 2朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 3张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 4A.Yilmaz, O.Javed, and M.Shah. Object tracking: A survey [J]. ACM Computing Survey, 2006.
  • 5D. Beymer, and K. Konolige. Real-time tracking of multiple people using continuous detection [C]. International Conference on Computer Vision, 1999.
  • 6G. Hager, M. Yeasin and R. Sharma. Multiple kernels tracking with SSD [C]. Computer Vision and Pattern Recogni- tion, 790-797, 2004.
  • 7K. Lee and D. Kriegman. Online learning of probabilistic appearance manifolds for video-based recognition and tracking [C]. Computer Vision and Pattern Recognition, 852-859, 2005.
  • 8David G. Lowe. Distinctive image features from scale-invari- ant keypoints [J]. International Journal of Computer Vision, 60: 91-110, 2004.
  • 9D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 24:603-619, 2002.
  • 10D. Shocaj and A. Leonardis. Weighted and robust incre- mental method for subspace learning [C]. Proceedings of the Ninth IEEE International Conference on Computer Vision, 2: 1494-1499, 2003.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部