期刊文献+

基于PCR和PLS的沙棘汁品种近红外光谱研究 被引量:2

Research on Varieties of Sea Buckthorn Juice by Near-Infrared Diffuse Reflectance Spectroscopy Based on the PCR and PLS
下载PDF
导出
摘要 建立可见-近红外漫反射光谱与沙棘汁品种之间的数学模型,以评价可见-近红外漫反射光谱技术快速检测沙棘汁品种。采用美国ASD公司的FieldSpec3光谱仪对三种不同品种的沙棘汁进行光谱分析,各获取30个样本的光谱数据,对原始光谱进行一阶微分和二阶微分预处理,并利用偏最小二乘法(PLS)数学校正方法对三种不同预处理的光谱数据建模。结果表明,采用二阶微分预处理数据,应用PLS方法建模较好,其校正模型相关系数为0.9992,均方根误差为0.0317;采用主成分回归(PCR)和偏最小二乘法(PLS),对沙棘汁的二阶微分数据进行分析比较,结果也表明,基于二阶微分数据,应用PLS方法建模较为理想,其预测集的相关系数为0.9988,所测预测样本的均方根误差为0.0392。近红外光谱可作为一种快速、有效的无损检测方法来识别沙棘汁的品种。 The objectives of this study are to establish mathematical relationship between visible and near-infrared (Vis NIR) diffuse reflectance spectroscopy and sea buckthorn juice varieties, and to evaluate the applicability of Vis_NIR spectroscopy technique for fast measurement of the sea buckthorn juice varieties. A Fieldspec3 spectroradio meter was used for collecting 30 samples spectra data of the three kinds of sea buckthorn juices, Then the first and second derivatives were calculated using Vis_NIR diffuse reflectance spectroscopy, and principal component regression (PCR) and partial least square (PLS) regression were used to establish mathematical models to analyze the spectral data with three pretreatments The best prediction results were obtained, which was based on second derivative with PLS model, and its correlation coefficients of calibration set was 0. 9992 , and root mean standard error of correction (RMSEC) was 0. 0317. Based on the second derivative with PLS model, and its correlation coefficient of prediction set is 0. 9988 ,and root mean standard error of correction (RMSEC) is 0. 0392. Vis_NIR spectroscopy is a fast and available method for non-destructive detection of Sea buckthorn Juice Varieties.
出处 《山西农业大学学报(自然科学版)》 CAS 2010年第1期46-48,共3页 Journal of Shanxi Agricultural University(Natural Science Edition)
基金 山西省科技攻关项目(2007031109-2)
关键词 可见-近红外漫反射光谱 快速检测 沙棘汁品种 PCR PLS Near-infrared diffuse reflectance spectroscopy Fast measurement Seabuckthorn juice varieties PCR PLS
  • 相关文献

参考文献10

二级参考文献121

共引文献222

同被引文献25

  • 1王斌,薛建新,张淑娟.扫描次数对鲜枣硬度近红外光谱建模响应特性的影响[J].山西农业大学学报(自然科学版),2013,33(5):446-449. 被引量:4
  • 2褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542. 被引量:567
  • 3罗一帆,郭振飞,朱振宇,王川丕,江和源,韩宝瑜.近红外光谱测定茶叶中茶多酚和茶多糖的人工神经网络模型研究[J].光谱学与光谱分析,2005,25(8):1230-1233. 被引量:78
  • 4曲泽洲,王永蕙.中国果树志:枣卷[M].北京:中国林业出版社.1993.
  • 5黄星奕,刘益权,赵杰文.基于近红外图像技术的水果轻微损伤检测[J].微计算机信息,2007,23(34):229-231. 被引量:15
  • 6Krivoshiev G P,Chalueova R P,Moukarev M I. A Possibility fore limination of the inter ference form the peel in non linn on destructive determination of the internal quality of fruit and vegetables by VIS/NIR spectroscopy[J].{H}Postharvest Biology and Technology,2000,(02):344-353.
  • 7Sanchez M T,Perez-Marin D,Flores-Rojas K. Use of near-infrared reflectance spect-roscopy for shelf-life discrimination of green asparagus stored in a cool room under controlled attnosphere[J].{H}TALANTA,2009,(02):530-536.
  • 8Peirs A,Schenk A,Nicolai B M. Effect of natural variability among apples on the accuracy of VIS-NIR calibration models for optimal harvest date predictions[J].{H}Postharvest Biology and Technology,2005.1-13.
  • 9Martens H,Naes T. Multivariate Calibration[M].Chicheter:John Wiley & Sons,1996.116-146.
  • 10Zhang S J, Zhang H H, Zhao Y R, et al. A simple identification mod- el for subtle bruises on the fresh jujube based on NIR spectroscpy[J]. Mathematical and Computer Modelling, 2013,58 : 545-550.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部