期刊文献+

基于两级分类器的人脸检测系统设计 被引量:2

Face Detection System Design Based on Two Classifiers
下载PDF
导出
摘要 人脸识别技术拥有广泛的应用前景,但是目前不少实现方式存在一些不尽人意之处。在对OPENCV与SVM分类器进行分析的基础上,阐述了基于两级分类器的人脸检测方法的原理和实现过程,首先分析了两级分类器的构建,引入人脸图像的矩形特征向量,将图像的矩形特征作为分类的依据,随后论述了系统设计与实现,包括灰度变换过程、直方图均衡过程、图像平滑过程以及金字塔序列化的实现。这种检测模式能够加快处理速度,提升效率。 The face recognition technology has broad application prospects, but right now there are some failings in many implementations. Based on the analysis of OPENCV with the SVM classifier, this paper elaborated a strategy based on two-stage classifier of face detection principle and the implementation process, first, analysed two classifier construction,introduced a rectangular face image feature vector,used the image of the rectangular features as the basis for classification, and then discussed the system design and implementation, including the gray-scale transformation process, the process of histogram equalization, image smoothing serialization process as well as the realization of the pyramid. This test model can speed up the processing speed and has higher efficiency.
作者 张永 薛芝茂
机构地区 兰州理工大学
出处 《计算机科学》 CSCD 北大核心 2010年第4期293-295,298,共4页 Computer Science
基金 甘肃省自然科学基金(0809RJZA015 智能化的混合元搜索引擎研究)资助
关键词 人脸检测 OPENCV SVM分类器 Human face detection,OPENCV, SVM classifier
  • 相关文献

参考文献5

  • 1Sobottka K,Pitas I.A novel method for automatic face segmentation,facial feature extraction and tracking[J].Signal Processing:Image Communication,2008,12(3):263-281.
  • 2Craw I,Ellis H,Lehman J R.Automatic extraction of face-features[J].Pattern Recognition Letters,1987,5(2):183-187.
  • 3Govindaraju V.Locating human faces in photographs[J].International Journal of Computer Vision,2006,19(2):129-146.
  • 4Wang J,Tan T.A new face detection method based on shape information[J].Pattern Recognition Letters,21(6/7):463-471.
  • 5闫文秀,裴建岗,孙颖,金卫东.基于Gabor滤波器和改进BP神经网络的人脸检测方法[J].重庆工学院学报(自然科学版),2009,23(4):98-102. 被引量:1

二级参考文献9

  • 1林宇生,杨静宇.基于Gabor滤波特征和支持向量机的人脸检测[J].计算机工程与应用,2007,43(1):33-34. 被引量:5
  • 2戴葵.神经网络设计[M].北京:机械工业出版社,2002.399-421.
  • 3Liu C.A Bayesian Discriminating Features Methods for Face Detection[J].IEEE Transaction on Pat-tern Analysis and Machine Intelligence,2003,25:725-740.
  • 4Rowley H A,Baluja S,Kanade T.Neural network based face detection[J].IEEE Transaction on Pa-ttern Analysis and Machine Intelligence,1998,20(1):23-38.
  • 5Huang L L,Shimizu A,Kobatake H.Robust face detection using Gabor filter featur-es[J].Pattern Recognition Letters,2005,117:1641-1649.
  • 6Hu X,Guo A C.Efficient Back-propagetion Learning Using Optimal Learning Rate and Mom-entum[J].Neural Networks,1997,10(3):517-527.
  • 7郑逢德,杨友良.支持向量机的人脸检测方法[J].信息技术,2007,31(8):78-80. 被引量:5
  • 8徐勇 荆涛.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 9张晓煜,赵秀英,李向.基于小波变换和支持向量机的人脸检测[J].微计算机信息,2007,23(34):237-238. 被引量:2

同被引文献14

  • 1Hjelmas E, Low B K. Face Detection.. A Survey[J]. Computer Vision and Image Understanding, 2001,83(3) : 236-274.
  • 2Schwerdt K,Crowley J. Robust face tracking using color[C] // Proceedings Fourth IEEE International Conference on Automatic Face and Gesturerecognition. 2000..90-95.
  • 3Jin Zhong, Lou Zhen, Yang Jing-yu, et al. Face detection using template matching and skin-color information[J]. Neuro computing, 2007,70 (4-6) : 794-800.
  • 4Govindaraju V. Locating human faces in photographs[J]. International Journal of Computer Vision, 1996,19(2).
  • 5Rowley H A, Baluja S, Kanade T. Neural network-based face detection[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1998,20(1),23-28.
  • 6Huang Lin-Lin, Shimizu A. Face detection from cluttered images using a polynomial neural network[J]. Neurocomputing, 2003, 51 : 197-211.
  • 7Osuna E, Freund R, Girosi F. Training support vector machines: An application to face detection[C] //Proc. Computer Vision and Pattern Recognition. Puerto Rico, 1997 : 130-136.
  • 8Viola P,Jones M. Rapid object detection using a boosted cascade of simple teatures [C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR 2001). Kauai, Hawaii: [ s. n. ],2001 : 511-518.
  • 9Fok H, Chi T. A hierarchical learning network for face detection with in-plane rotation [J]. Neurocomputing, 2008, 71 (16-18) : 3253-3263.
  • 10Shih P, Liu Cheng-jun. Face detection using discriminating feature analysis and Support Vector Machine [J]. Pattern Recognition,2006,39(2) :260-276.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部