期刊文献+

压电复合材料中双周期圆柱形夹杂的反平面问题

Anti-plane problems of doubly periodic cracks of cylindrical inclusion of piezoelectric composite materials
下载PDF
导出
摘要 目的讨论无限大均匀压电复合材料中裂纹中心位于矩形顶点且成双周期分布的反平面问题。方法利用保角变换及其椭圆函数进行研究。结果/结论给出了压电复合材料中裂纹中心位于矩形顶点且成双周期分布的反平面问题的封闭解,而且得到了应力强度因子和电位移强度因子。 Aim To investigate the anti-plane problem of crack centers that lie in rectangular vertices and show doubly periodical distribution in infinite and uniform piezoelectric composite materials. Methods Conformal mapping and elliptical function are used to investigate the anti-plane problem. Results/Conclusion The closed-form solution of the anti-plane problem of crack centers that lie in rectangular vertices and show doubly periodical distribution in piezoelectric composite materials is put forward. In the meantime, stress intensity factor and electric displacement intensity factor are obtained.
作者 常莉红
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2010年第1期19-22,共4页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 宝鸡文理学院院级课题(ZK09128)
关键词 压电复合材料 双周期 椭圆函数 piezoelectric composite materials double periodicity elliptical function
  • 相关文献

参考文献11

二级参考文献35

  • 1徐耀玲,蒋持平.双周期圆截面纤维复合材料平面问题的解析法[J].力学学报,2004,36(5):596-603. 被引量:6
  • 2郑可.双周期平面弹性混合问题[J].应用数学学报,1997,20(1):77-85. 被引量:5
  • 3Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. In: Proceedings of the Royal Society of London, 1957, A241:376-396.
  • 4Wu LZ. Interaction of two circular cylindrical inhomogeneities under anti-plane shear. Composites Science and Technology, 2000, 60(12-13): 2609-2615.
  • 5Wu LZ, Chen J, Meng QG. Two piezoelectric circular cylindrical inclusions in the infinite piezoelectric medium. Int J Engineering Science, 2000, 38(8): 879-892.
  • 6Han XL, Wang TC. Elastic fields of interacting elliptic inhomogeneities, lnt J Solids and Structures, 1999, 36:4521-4541.
  • 7Adam DF, Doner DR. Longitudinal shear loading of a unidirectional composite. Journal of Composite Materials,1967, 1:1-4.
  • 8Chen CH. Fiber-reinforced composites under longitudinal shear loading. ASME Journal of Applied Mechanics, 1970,.37:198-201.
  • 9Li X. Application of doubly quasi-periodic boundary value problems in elasticity theory. [PHD Thesis], Berlin: Berlin University, 1999.
  • 10Lu JK. Boundary Value Problems for Analytic Function.Singapaxe: World Scientific, 1993.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部