期刊文献+

Band-rejection filter based on a Bragg fiber with a defect layer 被引量:2

Band-rejection filter based on a Bragg fiber with a defect layer
原文传递
导出
摘要 A novel band-rejection filter based on a Bragg fiber with a defect layer is proposed. A defect layer is introduced in the periodic high/low index layers in the cladding of the Bragg fiber, which results in large confinement loss for some resonant wavelengths inside the band gap range of the Bragg fiber. A segment of the Bragg fiber with a defect layer can be used as a band-rejection filter, whose characteristics are mainly determined by the structure of the Bragg fiber. The simulation results show that the bandwidth of such a band-rejection filter is dependent on the number of the periodic high/low index layers in both sides of the defect layer in the cladding of the Bragg fiber. A novel band-rejection filter based on a Bragg fiber with a defect layer is proposed. A defect layer is introduced in the periodic high/low index layers in the cladding of the Bragg fiber, which results in large confinement loss for some resonant wavelengths inside the band gap range of the Bragg fiber. A segment of the Bragg fiber with a defect layer can be used as a band-rejection filter, whose characteristics are mainly determined by the structure of the Bragg fiber. The simulation results show that the bandwidth of such a band-rejection filter is dependent on the number of the periodic high/low index layers in both sides of the defect layer in the cladding of the Bragg fiber.
作者 何忠蛟
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第3期259-261,共3页 中国光学快报(英文版)
基金 supported by the Foundation of Zhejiang Provincial Education Department under Grant No. Y200803144
关键词 Bragg cells DEFECTS Fibers Bragg cells Defects Fibers
  • 相关文献

参考文献22

  • 1M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
  • 2S. G. Johnson, M. Ibanescu,. M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, Opt. Express 9, 748 (2001).
  • 3A. Argyros, Opt. Express 10. 1411 (2002).
  • 4G. Vienne, Y. Xu, C. Jakobsen, H.-J. Deyerl, J. B. Jensen, T. Sorensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, Opt. Express 12, 3500 (2004).
  • 5T. Katagiri, Y. Matsuura, and M. Miyagi, J. Lightwave Technol. 24, 4314 (2006).
  • 6K. J. Rowland, S. Afshar V., and T. M. Monro, J. Lightwave Technol. 26, 43 (2008).
  • 7C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Miiller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, Nature 424, 657 (2003).
  • 8J. C. Knight, Nature 424, 847 (2003).
  • 9J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282.1476 (1998).
  • 10P. Russell, Science 299. 358 (2003).

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部