摘要
针对二维粘性波动方程模型问题,提出了一类基于双线性插值的交替方向有限体积元方法,并给出了两种具体计算格式,一是基于有限差分方法中Douglas思想的格式,二是一类推广型的局部一维格式.分析证明了该方法按照L^2范数在时间和空间方向均有二阶收敛精度.最后,数值算例验证了算法的有效性和精确性.
An alternating direction finite volume element method based on bilinear interpolation is presented for a class of two-dimensional viscous wave equations and two concrete computational schemes are given, one is similar to Douglas scheme in finite difference and the other is an extended locally one-dimensional scheme. It is proved that the method has second order accuracy both in temporal and spatial directions with respect to L^2 norm. Finally, a numerical example is provided to demonstrate the efficiency and accuracy of the method.
出处
《数值计算与计算机应用》
CSCD
北大核心
2010年第1期64-75,共12页
Journal on Numerical Methods and Computer Applications
关键词
二维粘性波动方程
交替方向方法
有限体积元方法
收敛性
误差估计
two-dimensional viscous wave equation
alternating direction method
finite volume element method
convergence
error estimate