期刊文献+

机器学习在入侵检测中的应用综述 被引量:2

The Application of Machine Learning Methods to Intrusion Detection
下载PDF
导出
摘要 对目前主要的机器学习方法进行了简要介绍和评述,然后描述了四种具体的机器学习方法在入侵检测中的应用,最后结合网络攻击的发展趋势,阐述了入侵检测机器学习方法的发展方向。 Several kinds of current main machine learning methods are generally introduced and reviewed in this paper. And the application of four concrete machine learning methods to intrusion detection is described. Finally, its development way is presented according to the trend of network attack.
机构地区 [
出处 《计算机安全》 2010年第3期20-21,24,共3页 Network & Computer Security
关键词 入侵检测 遗传算法 强化学习 向量机 Intrusion Detection Genetic Algorithm Reinforcement Learning Support Vector Machine
  • 相关文献

参考文献5

二级参考文献44

  • 1陈萍,张以皓,宋金玉,赵成.Linux内核级审计系统的设计与实现[J].解放军理工大学学报(自然科学版),2004,5(3):13-16. 被引量:1
  • 2蔡煜东.运用改进的遗传算法拟合离子选择电极工作曲线[J].分析化学,1995,23(6):640-643. 被引量:5
  • 3蔡煜东.分析化学中非线性多元函数拟合的遗传算法[J].分析化学,1995,23(7):790-792. 被引量:5
  • 4龙卫江,张文修.基于相近原则的半指导直推学习机及其增量算法[J].应用数学学报,2006,29(4):619-632. 被引量:2
  • 5李军.用于最优化的计算智能[M].北京:清华大学出版社,1999..
  • 6[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 7[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 8[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 9[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 10[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.

共引文献268

同被引文献20

  • 1张连华,张冠华,郁郎,张洁,白英彩.Intrusion detection using rough set classification[J].Journal of Zhejiang University Science,2004,5(9):1076-1086. 被引量:16
  • 2张义荣,肖顺平,鲜明,王国玉.基于机器学习的入侵检测技术概述[J].计算机工程与应用,2006,42(2):7-10. 被引量:15
  • 3F.Ahmed,H.Hameed,M.Z.Shafiq,M.Farooq.Using spatio-temporal information in API calls with machine learning algorithms for malware detection and analysis[R/OL]. http://www.nexginrc.org/papers/tr42-faraz.pdf .
  • 4Gary McGraw,Greg Morrisett.Attacking Malicious Code: A Report to the Infosec Research Council[].IEEE Software.2000
  • 5D. Lo,H. Cheng,J. Han,S. Khoo,C. Sun.Classification of Software Behaviorsfor Failure Detection: A Discriminative Pattern Mining Approach[].KDD’’.2009
  • 6W.Amold,G.Tesauro.Automatically generated Win32heuristic virusdetection[].Procof theInternational Virus Bulletin Conference.
  • 7G.Stein,B.Chen,A.S.Wu,K.A.Hua.Decision tree classifier for network intrusion detection with GA-based feature selection[].Procof therd ACM Southeast Conference.2005
  • 8Li,W.Using getic agorithm for network intrusion detection[].Procof United States Department of Energy Cyber Security GroupTraining Conference.2004
  • 9Schultz M,Eskin E,Zadok E,et al.Data mining methods for detection of new malicious executables[].Proceedings of the IEEE Symposium on Security and Privacy.2001
  • 10C. Seifert,,I. Welch,,P. Komisarczuk.Identification of Malicious Web Pages with Static Heuristics[].Telecommunication Networks and Applications Conference.2008

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部