期刊文献+

公共场所典型异常声音的特征提取 被引量:16

Feature Extraction of Typical Abnormal Sounds in Public Places
下载PDF
导出
摘要 针对采用梅尔倒谱系数(MFCC)表征异常声音时识别率低下问题,提出获取MFCC的改进方法,包括对公共场所典型异常声音信号的特性分析和MFCC提取过程中滤波器组的重新设计。基于公共场所异常声音数据库的实验结果表明,与MFCC特征提取方法相比,该方法提高了特征参数在识别系统中的效率,具有一定的优越性和实用性。 Aiming at the problem that recognition rate is low when using Mel-Frequency Cepstral Coefficient(MFCC) to present the abnormal sounds, this paper proposes an improved feature extraction method to handle the issue, including the analysis of the characteristics of abnormal sounds and the redesign of the filter bank of MFCC. Experimental results conducted on the database of public abnormal sounds show that the method substantially outperforms MFCC feature extraction method in recognition rate and efficiency, and it can be applied in practice.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第7期208-210,共3页 Computer Engineering
基金 重庆市科技攻关计划基金资助重点项目(CSTC2007AC2018)
关键词 异常声音 梅尔倒谱系数 滤波器组 隐马尔可夫模型 特征提取 abnormal sound Mel-Frequency Cepstral Coefticient(MFCC) filter bank Hidden Markov Model(HMM) feature extraction
  • 相关文献

参考文献7

  • 1Clavel C, Ehrette T, Richard G. Events Detection for an Audio-based Surveillance System[C]//Proc. of IEEE International Conference on Multimedia and Expo. [S. 1.]: 1EEE Press, 2005.
  • 2I Dufaus A, Besacier L, Ansorge M, et al. Automatic Sound Detection and Recogoilion for Noisy Environment[C]//Proc. of European Signal Processing Conference. Tampere, Finland: [s. n.], 2000.
  • 3陈迪,龚卫国,杨利平.基于基音周期的语音MFCC参数提取[J].计算机应用,2007,27(5):1217-1219. 被引量:4
  • 4陈迪,龚卫国,李波.噪声鲁棒性说话人识别语音高频加权MFCC提取[J].仪器仪表学报,2008,29(3):668-672. 被引量:15
  • 5温源,侯震,李明,等.Mel刻度上非均匀分布滤波器组在MFCC参数提取中的应用[C]//第六届全国人机语音通讯学术会议论文集深圳:[出版者不详],2001.
  • 6lstrate D, Castelli E. Intbnnation Extraction from Sound for Medical Telemonitoring[J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(2): 264-274.
  • 7龚晓庆,柯素娟,李辉,华庆一.基于HMM的嵌入式语音交互在AmI中的应用[J].计算机工程,2009,35(2):200-202. 被引量:4

二级参考文献18

  • 1Weiser M. The Computer for the Twenty-first Century[J]. Scientific American, 1991, 265(3): 94-104.
  • 2Poel C. On Ambient Intelligence, Needful Things and Process Technologies[C]//Proc. of the 30th European Conference on Solid-state Circuits. Leuven, Belgium: [s. n.], 2004: 3-10.
  • 3Jing Ming-jia, Liu Jia, Liu Ren-sheng. Application of Speech Recognition System Based on HMM in Embedded System[J]. Application of Electronic Technique, 2003, 10(2): 12-14.
  • 4Rabiner L, Juang B H. An Introduction to Hidden Markov Models[J]. IEEE ASSP Magazine, 1986, 3(1 ): 4-16.
  • 5Meng Yuan, Lee T. Speech Recognition on DSP: Issues on Computational Efficiency and Performance Analysis[J]. Micro- processors and Microsystems, 2006, 30(3): 155-164.
  • 6Bergmann N, Waldeck P, Williams J. A Catalog of Hardware Acceleration Techniques for Real-time Reconfigurable System on Chip[C]//Proc. of the 3rd Int'l Workshop on System-on-Chip for Real-time Applications. Calgary, Alberta, Canada: [s. n.], 2003, 112-115.
  • 7易克初 田斌 付强.语音信号处理[M].北京:国防工业出版社,2003..
  • 8DAVIES SB,MERMELSTEIN P.Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences[J].IEEE Transaction Acoustics,Speech and Signal Processing,1980,(4):375-366.
  • 9RABINER LR,JUANG BH.Fundamentals of speech recognition[M].Prentice Hall,1993.
  • 10KIM S,ERIKSSON T.A Pitch Synchronous Feature Extraction Method For Speaker Recognition[J].IEEE,Acoustics,Speech and Signal Processing proceedings,2004,(1):405 -408.

共引文献19

同被引文献97

引证文献16

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部