摘要
In order to understand the effect of the solidification structure on the formability of ultra low carbon ferritic stainless steel (FSS) ,this work studies the ridging phenomenon and the deep-drawing property in detail and the research method was X-ray diffraction (XRD) and scanning electron microscope (SEM) technique. The result shows that the columnar grain specimen had a higher ridging height than the equiaxed grain specimen, which was mainly attributed to the formation of grain colonies in the columnar grain specimen. After final recrystallization annealing, the equiaxed grain specimen obtained a high-intensity T-fiber texture and an excellent deep-drawing property.
In order to understand the effect of the solidification structure on the formability of ultra low carbon ferritic stainless steel (FSS) ,this work studies the ridging phenomenon and the deep-drawing property in detail and the research method was X-ray diffraction (XRD) and scanning electron microscope (SEM) technique. The result shows that the columnar grain specimen had a higher ridging height than the equiaxed grain specimen, which was mainly attributed to the formation of grain colonies in the columnar grain specimen. After final recrystallization annealing, the equiaxed grain specimen obtained a high-intensity T-fiber texture and an excellent deep-drawing property.
基金
funded by both the National Natural Science Foundation of China(50734002)
CITIC-CBMM R&D Subject Foundation (2010-D046).