期刊文献+

基于特征波形稀疏匹配的滚动轴承故障模式识别 被引量:4

Fault pattern recognition of rolling bearings based on characteristic waveform sparse matching
原文传递
导出
摘要 提出了一种基于特征波形稀疏匹配的滚动轴承故障模式识别方法.该方法通过自行设计的搜索算法从信号中提取多段特征波形,并对其进行学习优化,以优化后的特征波形作为基原子模型生成原子库及模式匹配库.将待识别信号在模式匹配库上进行一阶匹配分析,实现轴承故障的模式识别.对正常轴承、滚动体故障、内圈故障和外圈故障信号进行实验,验证了方法的有效性和鲁棒性. A method of fault pattern recognition for rolling bearings was proposed on the basis of sparse matching of a characteristic waveform (CW).With a well-designed search algorithm,multi-section CWs were extracted from a vibration signal.A representative CW was obtained by learning from the extracted CWs.Then,the representative CW was acted as an atom model to construct a dictionary and a pattern matching dictionary.Pattern recognition was conducted through one-order matching analysis in the pattern matching dictionary.Employing the signals of a normal bearing,ball fault,inner race fault and outer race fault for pattern recognition,the result indicates that the method is valid and robust.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2010年第3期390-396,共7页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(No.50705069 No.50674010 9) 高等学校博士学科点专项科研基金资助项目(No.20No.50905013 No.50934007) 国家高技术研究发展计划资助项目(No.2007AA04Z16070008050 No.20090006120007)
关键词 滚动轴承 点蚀 模式识别 特征波形 rolling bearings pitting pattern recognition characteristic waveform
  • 相关文献

参考文献12

  • 1万书亭,吕路勇,何玉灵.基于提升模式非抽样小波变换的滚动轴承故障诊断方法研究[J].振动与冲击,2009,28(1):170-173. 被引量:22
  • 2章立军,徐金梧,阳建宏,杨德斌.自适应多尺度形态学分析及其在轴承故障诊断中的应用[J].北京科技大学学报,2008,30(4):441-445. 被引量:15
  • 3潘紫微,徐金梧.一种用于模式分类有监督的模糊ART神经网络[J].北京科技大学学报,2000,22(3):262-265. 被引量:4
  • 4Samanta B, Al-Balushi K R, Al-Araimi S A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng Appl Artiflntell, 2003, 16:657.
  • 5Mallat S G, Zhang Z F. Matching pursuit with time-frequency dictionaries. IEEE Trans Signal Process, 1993, 41 (12) : 3397.
  • 6Fan H, Meng Q F, Zhang Y Y, et al. Matching pursuit based on nonparametric waveform estimation. ~igital Signal Process, 2009, 19:583.
  • 7Engan K, Aase S O, Husoy J H. Method of optimal directions for framedesign. 1EEE Int ConfA t Speech Signal Process, 1999, 5:2443.
  • 8Engan K, Aase S O, Husoy J H. Multi-frame compression: theory and design. Signal Process, 2000, 80:2121.
  • 9Zhang J F, Huang Z C. Kernel fisher discriminant analysis for bearing fault diagnosis. IEEE Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005: 3216.
  • 10Yang H Y, Mathew J, Ma L. Fault diagnosis of rolling element bearings using basis pursuit. Mech Syst Signal Process, 2005, 19 (2) : 341.

二级参考文献29

共引文献63

同被引文献34

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部