期刊文献+

不同碳源对Li_3V_2(PO_4)_3/C复合正极材料性能的影响 被引量:1

Effects of Different Carbon Sources on Performance of Li_3V_2(PO_4)_3/C Composite Cathode Materials
下载PDF
导出
摘要 以甲基纤维素、壳聚糖及葡萄糖分别作为碳源,应用碳热还原法合成正极Li3V2(PO4)3/C复合材料.XRD、SEM等方法分析、表征材料的结构、形貌和电化学性能.结果表明,碳源的选择对产物的比容量、循环寿命和倍率性能等均有较大的影响.以甲基纤维素为碳源制备的单斜Li3V2(PO4)3正极材料具有较好的电化学性能,在3.0~4.5V,0.2C倍率下,其初始容量为130.6mAh·g-1,30次循环后放电比容量仍可达到108mAh·g-1. The monoclinic Li3V2 (PO4 )3 cathode materials were prepared by carbothermal reduction method, with methyl cellulose, chitosan (crab shells) or glucose anhydrous as carbon sources, respectively. The crystal structures,morphologies and the electrochemical performances were characterized by XRD, SEM and electrochemical measurement. The XRD patterns show that the samples obtained at 800℃ for 6 h have a pure monoclinic structure,which indicates that the carbon exists in amorphous phase. Electrochemical measurements show that the difference of carbon sources has a significant influence on the electrochemical properties of the materials. The Li3V2(PO4)3/C with methyl cellulose as the reduction agent has the best electrochemical performance. In the voltage range of 3.0-4.5 V and at 0.2 C(1 C = 140 mAh·g^-1),the initial discharge specific capacity reached 130.6 mAh · g^-1, and maintained 108 mAh·g^-1 after 30 cycles, even after 50 cycles at 1 C, the specific capacity were still more than 90 mAh·g ^-1
出处 《电化学》 CAS CSCD 北大核心 2010年第1期30-34,共5页 Journal of Electrochemistry
基金 "973"计划子课题(2006CB202605)资助
关键词 LI3V2(PO4)3 正极材料 碳源 Li3V2 ( PO4) 3 cathode materials carbon sources
  • 相关文献

参考文献6

二级参考文献148

共引文献108

同被引文献24

  • 1李婷,钱江峰,曹余良,杨汉西,艾新平.Li_(1-x)M_xFePO_4阴极材料的合成和电化学性能[J].电化学,2007,13(2):136-139. 被引量:3
  • 2Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194.
  • 3Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128.
  • 4Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid-State Letters, 2001, 4(1): A170-A172.
  • 5Franger S, Cras F L, Bourbon C, et al. LiFePO4 synthesis routes for enhanced electrochemical performance[J]. Electrochemical and Solid-State Letters, 2002, 5(10): A231-A233.
  • 6Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Materials, 2004, 3(3): 147-152.
  • 7Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): A47-A50.
  • 8Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Communications, 2004, 129(5): 311-314.
  • 9Yamada,A.; Chung, S. C. Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4 V cathode materials for lithium batteries[J]. Journal of The Electrochemical Society, 2001, 148(8): A960-A967.
  • 10Wang G X, Bewlay S, Yao J, et al. Characterization of LiMxFe1-xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method[J]. Electrochemical and Solid-State Letters, 2002, 7(12): A503-A506.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部