期刊文献+

分离结晶Bridgman法晶体生长过程的影响因素 被引量:2

THE INFLUENCE FACTOR OF THE DETACHED SOLIDIFICATION BRIDGMAN GROWTH
原文传递
导出
摘要 本文采用全局数值模拟方法探讨了微重力条件下温度梯度对分离结晶Bridgman法晶体生长系统的作用规律。同时,在常重力条件下研究了坩埚半径对晶体生长系统的影响。结果发现,在微重力条件下随着温度梯度的增加,晶体生长系统内部的流动强度随之增加,且由于晶体生长系统低温区温度不断降低,使得结晶界面位置不断上升;在常重力条件下,重力的作用随着坩埚半径的增加而增强,导致晶体生长系统内部的流动强度增加,最大流函数增大。 The effect of temperature gradient on the detached solidification Bridgman growth is studied by global simulation method in microgravity.In gravity the influence of crucible radius on the system is also researched.The results show that the flow is intensified with the increase of temperature gradient in microgravity,and the solid-liquid interface ascends due to the decrease of the cold zone temperature.In gravity,the gravity effect is enhanced with the increase of crucible radius, so that the flow is strengthened and the max stream function increases.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第4期553-556,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50676112)
关键词 分离结晶 CDZNTE晶体 全局数值模拟 温度梯度 坩埚半径 detached solidification CdZnTe global simulation temperature gradient crucible radius
  • 相关文献

参考文献8

  • 1Duffar T, Harter P, Dusserre. Crucible De-Wetting During Bridgman Growth of Semiconductors in Microgravity [J]. J. Crystal Growth, 1990, 100:171-184.
  • 2Lefever R A, Chang C, Wilcox W R. Surface Driven Convection in InSb-GaSb Melts Solidified Aboard Skylab-III [J]. Bull. Am. Phys. Soc, 1975, 20:1511 -1523.
  • 3Duffar T, Boiton P, Dusserre P, et al. Crucible De-wetting during Bridgman Growth in Microgravity II. Smooth crucibles [J]. J. Crystal Growth, 1997, 179:397- 409.
  • 4Wang Y Z, Liya L R, William R Wilcox. Approximate Material-balance Solution to the Moving Meniscus Model of Detached Solidification [J]. J. Crystal Growth, 2002, 243:546- 560.
  • 5Volz M P, Schweizer M, Kaiser N, et al. Bridgman Growth of Detached GeSi Crystals [J]. J. Crystal Growth, 2002, 237/239:1844- 1848.
  • 6Zhang H, Moallemi M K, Prasad V. A Numerical Algorithm Using Multizone Grid Generation for Multiphase Transport Processes with Moving and free Boundaries [J]. Numerical Heat Transfer, 1996, B29:399-421.
  • 7Duffar T, Paret-Harter I, Dusserre P. Crucible De-wetting during Bridgman Growth of Semiconductors in Microgravity [J]. J. Crystal Growth, 1990, 100:171- 184.
  • 8刘俊成,姚光平,崔红卫,董抒华.碲锌镉垂直布里奇曼法晶体生长过程固液界面的演化[J].人工晶体学报,2003,32(6):555-562. 被引量:7

二级参考文献18

  • 1[1]Kennedey J J, Amirtharaj P M, Boyd P R, Qudri S B, Dobbyn R C, Long G G. Growth and Characterization of Cd1-xZnxTe and Hg1-yZnyTe [J]. J. Cryst. Growth, 1988, 86:93-99.
  • 2[2]Tanaka A, Masa Y, Seto S, Kawasaki T. Zinc and Selenium Co-doped CdTe Substrates Lattice Matched to HgCdTe [J]. J. Cryst. Growth, 1989, 94:166-170.
  • 3[3]Sen S, Stanard J E. Developments in the Bulk Growth of Cd1-xZnxTe for Substrates [J]. Prog. Crystal Growth and Charact., 1994, 29:253-273.
  • 4[4]Azoulay M, Rotter S, Gafni G, Tenne R, Roth M. Zinc Segregation in CdZnTe Grown under Cd/Zn Partial Pressure Control [J]. J. Cryst. Growth, 1992, 117:276-280.
  • 5[5]Lee T S, Lee S B, et al. Vertical Bridgman Techniques to Homogenize Zinc Composition of CdZnTe Substrates [J]. J. Electronic Materials, 1995, 24:1057-1059.
  • 6[6]Mühlberg M, Rudolph P, Genzel C, Wermke B, Becker U. Crystalline and Chemical Quality of CdTe and Cd1-xZnxTe Grown by the Bridgman Method in Low Temperature Gradients [J]. J. Cryst. Growth, 1990, 101:275-280.
  • 7[7]Cheuvart P, El-Hanani U, Schneider D, Triboulet R. CdTe and CdZnTe Crystal Grown by Horizontal Bridgman Technique [J]. J. Cryst. Growth, 1990, 101:270-274.
  • 8[8]Lu Y C, Shiau J J, Fiegelson R S, Route R K. Effect of Vibrational Stirring on the Quality of Bridgman-grown CdTe [J]. J. Cryst. Growth, 1990, 102:807-813.
  • 9[9]Butler J F, Doty F P, Apotovsky B, Lajzerowicz J, Verger L. γ-ray and X-ray Detectors Manufactured from Cd1-xZnxTe Grown by a High-pressure Bridgman Method [J]. Mats. Sci. & Eng. B, 1993, 16:291-295.
  • 10[10]Capper P. The Role of Accelerated Crucible Rotation in the Growth of Hg1-xCdxTe and CdTe/CdZnTe [J]. Prog. Crystal Growth and Charact., 1994, 28:1-55.

共引文献6

同被引文献29

  • 1介万奇.Bridgman法晶体生长技术的研究进展[J].人工晶体学报,2012,41(S1):24-35. 被引量:11
  • 2段安锋,沈永宏,刘景和.大尺寸氟化钙单晶的光谱特性[J].硅酸盐学报,2007,35(1):85-87. 被引量:9
  • 3Annalize Kruger,Walter W Focke,Zola Kwela,et al.Effect of ionic impurities on the crystallization of gypsum in wet-process phosphoric acid[J].Ind Eng Chem Res,2001,40(5) ,1364-1369.
  • 4Jun Li,Jian-hua Wang,Yun-xiang Zhang.Effects of the impurities on the habit of gypsum in wet-process phosphoric acid[J].Ind Eng Chem Res,1997,36 (7),2657-2661.
  • 5Dumazer G,Narayan V,Smith A,et al.Modeling gypsum crystallization on a submicrometric scale[J].J Phys Chem C,2009,113(4),1189-1195.
  • 6Baohong Guan,Xianfa Ma,Zhongbiao Wu,et al.Crystallization routes and metastability of α-calcium sulfate hemihydrate in potassium chloride solutions under atmospheric pressure[J].J Chem Eng Data,2009,54(3):719-725.
  • 7XU Jiayue, SHI Minli, LU Baoliang, et al. Bridgman growth and characterization of calcium fluoride crystals [J]. Journal of Crystal Growth, 2006, 292: 391-394.
  • 8MAWencheng, ZHAO Lili, DING Guoqiang, et al. Numerical study of heat transfer during sapphire crystal growth by heat exchanger method [ J ]. International Journal of Heat and Mass Transfer, 2014, 72: 452-460.
  • 9BARVINSCHI F, STANCULESCU A, STANCULES- CU F. Heat transfer process during the crystallization of benzil grown by the Bridgman-Stockbarger method [J]. Journal of Crystal Growth, 2011, 317: 23-27.
  • 10MOONEY R P, MCFADDEN S, GABALCOV/~ Z,et al. An experimental-numerical method for estimating heat transfer in a Bridgman furnace [ J ]. Applied Thermal Engineering, 2014, 67: 61-71.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部