期刊文献+

跳扩散和随机利率模型下的欧式双向期权定价 被引量:5

Pricing of Bi-direction European Option with Jump Diffusion and Stochastic Interest Rates Model
原文传递
导出
摘要 假定股票价格的跳跃过程为一类特殊的更新跳过程,即事件发生时间间隔为相互独立且同服从Gamma分布的随机变量序列.利用鞅定价方法,用较简单的数学推导得到了在随机利率情形下跳扩散模型的欧式双向期权定价公式. This paper assumed stock price jump process for a special kind of renewal jump process,that is incident time interval for independent and subordinate to Gamma distribution random variable sequence.We obtain the European bi-direction option pricing formulas with jump diffusion model under the stochastic interest rates by simply mathematical induce by means of martingale method.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第6期9-14,共6页 Mathematics in Practice and Theory
基金 浙江省高等学校优秀青年教师资助计划 国家自然科学基金(40901241) 浙江省自然科学基金(Y5090377) 浙江省大学生科技创新活动计划(新苗人才计划)
关键词 更新过程 跳扩散模型 随机利率 欧式双向期权 renewal process jump diffusion model stochastic interest rates martingale European bi-direction option
  • 相关文献

参考文献6

  • 1Black F, Scholos M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81: 637-654.
  • 2Merton R C. Option pricing when underlying stock return are discontinuous[J]. Journal of Economy, 1976, 3: 125-144.
  • 3宁丽娟,刘新平.股票价格服从跳-扩散过程的期权定价模型[J].陕西师范大学学报(自然科学版),2003,31(4):16-19. 被引量:27
  • 4赵建国,师恪.跳-扩散模型下的复合期权定价公式[J].新疆大学学报(自然科学版),2006,23(3):257-263. 被引量:5
  • 5Marek Musiela, Marek Rutkowski. Martingale Methods in Financial Modelling[M](2'*d Edition). New York: Springer, 2007, 22-34.
  • 6Steven E. Shreve.Stochastic Calculus for Finance Continuous-Time Models[M]. New York: Springer 2007, 209-247.

二级参考文献10

  • 1约翰郝尔 张陶伟译.期权、期货和衍生证券[M].北京:华夏出版社,1997.178~179.
  • 2GESKE R. The Valuation of Compound Option[J]. Journal of Financial Economics, 1979,7,83-81.
  • 3GEMAN H,EL KARONI N, ROCHER J C. changes of numeraire,changes of probability and option pricing[J].Journal of Applied Probability, 1995,32.443-458.
  • 4Agliardi Elettra,Agliardi Rossella. AGeneralization of Geske Formula for Compound options [J]. mathematical socialsciences, 2003,45:75-82.
  • 5GUKHAL C R. The compuond option approach to american options in jump-diffusions[J], journal of economics dynamics & control, 2004,28:2 055-2 074.
  • 6CHAN T. pricing contingent claims on stocks driven by levy process[J]. Annals of Applied Probability, 1999,9:504-528.
  • 7PHAM H. Optimal stopping ,free boundary,and American option in a jump-diffusion model[J]. Applied mathematics & optimization, 1997,35 : 145-64.
  • 8MERRTON R C. Theory of Rational Option Pricing[J]. Bell Journal of Economics and Management Science, 1973,4:141-83.
  • 9刘嘉j.应用随机过程[M].科学出版社,2000..
  • 10钱晓松.跳扩散模型中的测度变换与期权定价[J].应用概率统计,2004,20(1):91-99. 被引量:28

共引文献29

同被引文献40

  • 1李松芹,张寄洲.跳扩散模型下重置期权的定价[J].高等学校计算数学学报,2005,27(S1):182-187. 被引量:17
  • 2王建稳.Possion跳—扩散模型的参数估计[J].数学的实践与认识,2005,35(7):155-158. 被引量:1
  • 3胡志锋,黄荣坦.纯生跳跃扩散型交换期权定价公式[J].数学研究,2005,38(3):333-338. 被引量:4
  • 4胡素华,张世英,张彤.双指数跳跃扩散模型的McMC估计[J].系统工程学报,2006,21(2):113-118. 被引量:25
  • 5Merton R C. Option pricing when underlying stock re- turns are discontionuous[ J ]. J Econom, 1976,3:125-144.
  • 6He S,Wang J, Yan J. Seminatingate and Stochastic Calculus [M]. Baca Batoa:CRC Press,1992.
  • 7Johnson S A, Tian Y S. The valuation and incentive effects of nontraditional executive stock options plans[ J ]. Journal of Finance Economics,2000,57:3-34.
  • 8COX J C, ROSS S A, RUBINSTEIN M. Option pricing: A simple approach[J], Journal of Finance Economics, 1979, 7 (2):229-263.
  • 9BARRAQUAND J P. Pricing of american path-dependent contingent claims [J]. Mathematical Finance,1996,3(1) :17-51.
  • 10SHREVE S,VECER J. Option on a trade account: Vacation calls. vacation puts and passport option [J]. Finance andStochastics,2000,8(4) :255-274.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部