期刊文献+

基于知识结构图的个性化学习内容生成算法 被引量:7

A Building Algorithm for Individual Learning Content Based on Structural Knowledge Graph
下载PDF
导出
摘要 在结构化知识图的基础上,根据不同学生的学习状态,提出了网络学习环境的个性化学习内容生成算法.在课程本体知识结构图的基础上,经过动态评估学习过程而形成基于不同学生的个性化知识结构图,结合其子空间及有向无环图的拓扑排序方法,设计并实现了基于目标知识点的学习路径和个性化学习内容生成算法,以及在线学习环境中个性化学习内容生成机制.经网络学习课程实例验证表明,该算法可以满足学生个性化学习的需求. Individual learning content retrieved from knowledge domain repositories for different learners is necessary in e-leaning environment for independent learning. This paper proposed an algorithm to produce individual learning content based on structural knowledge graph(SKG).The ontology domain structural graph of course is the foundation.Individual SKG is a result from course's SKG during students' learning process.A subspace of SKG is come out after learner choosing an object point to learn.The learning knowledge points and the relative learning objects are assembled through the topological sort algorithm and the individual SKG.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第3期418-422,共5页 Journal of Shanghai Jiaotong University
基金 国家十一五支撑项目(2007BAH09B05)
关键词 知识结构图 有向无环图 拓扑排序 个性化学习 structural knowledge graph(SKG) directed acyclic graph(DAG) topological sort individual(learning)
  • 相关文献

参考文献11

  • 1Karampiperis P, Sampson D. Adaptive instructional planning using ontologies [C]//Proeeedings of the fourth IEEE International Conference on Advanced Learning Technologies. Los Alamitos: IEEE Computer Society (ICALT' 2004), 2004 : 126-130.
  • 2Carchiolo V, Longheu A, Malgeri M. Courses personalization in an E-learning environment [C]//Prnceedings of the 3rd IEEE International Conference on Advanced Learning Technologies, Los Alamitos : IEEE Computer Society (ICALT' 2003), 2003:252-253.
  • 3Huang T C, Huang Y M, Cheng S C. Automatic and interactive e-Learning auxiliary material generation utilizing particle swarm optimization[J]. Expert Systems with Applications, 2008, 35 (4) : 2113-2122.
  • 4Devedzic V. Education and the semantic web [J]. International Journal of Artificial Intelligence in Education, 2004, 14(2) : 165-191.
  • 5申瑞民,汤轶阳,韩鹏,杨帆.基于概念图的教学内容智能调整模型及算法实现[J].上海交通大学学报,2002,36(5):698-701. 被引量:12
  • 6杨帆,申瑞民,童任,韩鹏.一种新颖的协作式自组织学习社区算法[J].上海交通大学学报,2004,38(12):2078-2081. 被引量:4
  • 7Gaeta A, Gaeta M, Ritrovato P. A grid based software architecture for delivery of adaptive and personalised learning experiences [J]. Personal and Ubiquitous Computing, 2009, 13 (3): 207-217.
  • 8Singley M K, Lam R B. The classroom sentinel: Supporting data-driven decision-making in the classroom [C]. Proceedings of the 14th International conference on World Wide Web. New York: ACM, 2005: 315-321.
  • 9Mazza R, Dimitrova V. Generation of graphical representations of student tracking data in course management systems [C]//Proceedings of the Ninth International Conference on Information Visualisation (IV' 05). Washington DC: Springer-Verlag, 2005: 253- 258.
  • 10CELTS-9.1,简单课程编列:信息模型规范[S].

二级参考文献7

  • 1Mohri T, Takada Y. Virtual integration of distributed database by multiple agents [A]. The First International Conference on Discovery Science[C]. Fukuoka, Japan: Springer-Verlag, 1998. 413-414.
  • 2Wang F. Self-organising communities formed by middle agents[A]. The First International Conference on Autonomous Agents and Multi-Agent Systems [C]. Bologna, Italy: ACM Press, 2002. 1333-1339.
  • 3Wang D Z, Shen R M, Shen L P. Collaborative learning based on multi-agent model [A]. International Conference on Web-based Learning: Remote Learning between Men and Machines [C]. HongKong, China: Springer-Verlag, 2002. 156-162.
  • 4Suthers,D. Collaborative representations: supporting face-to-face and online knowledge building discourse[A]. The 34th Hawaii International Conference on the System Sciences[C]. Maui, Hawaii, IEEE CS Press, 2001. 120-126.
  • 5Decker K, Sycara K, Williamson M. Middle-agents for the internet [A]. The Fifteenth International Joint Conference on Artificial Intelligence[C]. Japan: ACM Press, 1997. 578-583.
  • 6孙海涛,薛富善,刘鲲鹏,孙莉,廖旭,熊军,许亚超,袁玉静,王强.COX-2和mito-KATP通道在舒芬太尼预处理对心肌缺血再灌注大鼠延迟性心肌保护中的作用[J].中华麻醉学杂志,2010,30(4):456-460. 被引量:7
  • 7申瑞民,汤轶阳.基于概念图的个性化自主学习分析模型及实现[J].计算机科学,2001,28(10):39-42. 被引量:6

共引文献16

同被引文献38

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部