摘要
自提出随机拓扑度和随机不动点指数概念以来,随机拓扑度和随机不动点指数理论已成为研究随机非线性算子的一种基本方法,建立了许多新的定理。利用随机不动点指数理论,研究了不同边界条件下的随机算子方程随机解的存在性,得到了若干新的结果,所得结果推广了相关文献中的部分结果。
Since the notations of random topological degree and random fixed point index were proposed, they have become a basic method to investigate the random nonlinear operator, and many new theorems are obtained. In the paper, utilizing the random fixed point index theory, the existence of random solutions of random operator equations with different boundary conditions are studied, some new conclusions are obtained, which generalize several results in some related bibliographies.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2010年第1期1-4,共4页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金(10461007
10761007)
江西省自然科学基金(0411043
2007GZS2051)
关键词
随机不动点指数
随机算子方程
随机解
random fixed point index
random operator equation
random solution