期刊文献+

具有阶段结构及捕食者具有脉冲扰动的Beddington-DeAngelis食饵-捕食者模型 被引量:5

A Delayed Stage-structured Beddington-DeAngelis Predator-prey Model with Impulsive on Predator
下载PDF
导出
摘要 讨论与生物资源管理相关的具有阶段结构且捕食者具有脉冲扰动的食饵一捕食者模型,得到了食饵灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.通过数值模拟验证了所得理论结果的正确性.所得结论为现实的生物资源管理提供了可靠的策略依据。 A delayed stage -structured predator -prey biological resource management model with impulsive on predator is considered. Sufficient conditions which guarantee the global attractivity of prey - extinction periodic solution and permanence of the system are obtained. Numerical results show that the obtained conclusions are accurate. The results provide reliable tactic basis for the practical biological resource management.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2010年第1期5-11,共7页 Journal of Nanchang University(Natural Science)
基金 江西省自然科学基金(2009GZS0020)
关键词 食饵一捕食者模型 脉冲扰动 全局吸引 一致持久 predator - prey model impulsive perturbations global attractivity permanence
  • 相关文献

参考文献9

  • 1Ailleo WG, Freedman H I. A Time -delay Model of Single -species Growth with Stage - structured [ J ]. Math Biosci, 1990:101 - 139.
  • 2Das K, Sarkar A K. Algal Blooms Due to Throphic Interaction : Study of Time Delay Model [ J ]. Dynamics of Continuous, Discrete and Impulsive Systems ,2007,14:517 - 524.
  • 3Lakshmikantham V, Bainov D D, Simeonov P. Theory of Impulsive Differential Equations [ M ]. Singapor: World Scientific, 1989.
  • 4Jiao J, Chen L, Cai S. A Delayed Stage - structured Holling Ⅱ Predato - prey Model with Mutual Interference and Impulsive Perturbations on Predator[ J ]. Chaos, Solitons & Fractals 2007. doi : 10. 1016/j. chaos. 2007.09. 074 .
  • 5Kuang Y. Delay Differential Equation with Application in Population Dynamics [ M ]. NY:Academic Press, 1987:67 -70.
  • 6Dong L, Chen L, Sun L. Extinction and Permanence of the Predator - prey System with Stocking of Prey and Harvesting of Predator Impulsively Math [ J ]. Math Appl Sci,2006,29 : 415 - 425.
  • 7Zhu Hui, Xiong Zuoliang, Wang Xin. Analysis of an Eco - epidemiological Model with Time Delay [ J ]. Rocky Mountain Journal of Mathematics,2008,38:1 877 - 1 886.
  • 8Xiong Zuoliang, Xue Ying, Li Shunyi, A Food Chain System with Holling Ⅳ Functional Responses and Impulsive Effect [ J ]. International Journal of Biomathematics ,2008,1:361 -375.
  • 9熊佐亮,邹娓,王欣.具有脉冲预防接种的SIRS传染病模型[J].南昌大学学报(理科版),2008,32(1):21-24. 被引量:4

二级参考文献7

  • 1张玉娟,陈兰荪,孙丽华.一类具有脉冲效应的捕食者-食饵系统分析[J].大连理工大学学报,2004,44(5):769-774. 被引量:8
  • 2Mena - lorca and J, Hethcote H W. Dynamic Models of Infectious Diseases as Regulations of Populationsizes [ J]. J Math Biol, 1992,30 (6) : 693 - 716.
  • 3Hethcote H W. The Mathematics of Infectious Diseases [ J]. SIAM Rev ,2000,42:599 - 653.
  • 4Lajmanovich A, Yorke J A. A Deterministic Model for Gonorrhea in a Nonhomogeneous Population [ J ]. Math Biosci, 1976,28(3 ) :221 - 236.
  • 5Hethcote H W, Van Ark J W. Epidemiological Models with Heterogeneous Populations : Proportionate mixing, Parameter Estimation and Immunization Programs [ J ]. Math Biosci, 1987,84 ( 1 ) : 85 - 118.
  • 6Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations [ M ]. World Scientific, 1989.
  • 7马知恩,靳祯.总人口在变化的流行病动力学模型[J].华北工学院学报,2001,22(4):262-271. 被引量:28

共引文献3

同被引文献41

  • 1LIU X,CHEN L.Complex Dynamics of Holling Type II Lotka-Volterra Predator-prey System with Impulsive Perturbations on the Predator[J].Chaos Solitons & Fractals,2003,16:311-320.
  • 2LIU B,TENG Z,CHEN L.Analysis of a Predator-prey Model with Holling II Functional Response Concerning Impulsive Control Strategy[J].Computers and Mathematics with Applications,2006,193(1):347-362.
  • 3SONG X,XIANG Z.The Prey-dependent Consumption Two-prey One-predator Models with Stage Structure for the Predator and Impulsive Effects[J].Theoretical Population Biology,2006,242:683-698.
  • 4GEORGESCU P,ZHANG H.An Impulsively Controlled Predator-pestmodel with Disease in the Pest[J].Nonlinear Anal:Real World Appl,doi:10.1016/j.nonrwa,2008,10:060.
  • 5ZHANG S,CHEN L.A Study of Predator-prey Models with the Beddington-DeAngelis Functional Response and Impulsive Effect[J].Chaos Solitons & Fractals,2006,27:237-248.
  • 6SU Hua,DAI Binxiang,CHEN Yuming,et al.Dynamic Complexities of a Predator-prey Model with Generalized Holling Type III Functional Response and Impulsive Effects[J].Computers and Mathematics with Applications,2008,56:1715-1725.
  • 7SUNITA Gakkhar,BRAHAMPAL Singh.Dynamics of Modified Leslie-Gower-type prey-predator Model with Seasonally Varying Parameters[J].Chaos Solitons & Fractals,2006,27:1239-1255.
  • 8NAJI R K,BALASIM A T.On the Dynamical Behavior of Three Species Food Web Model[J].Chaos Solitons Fractals,2007,34:1636-1648.
  • 9GAKKHAR S,NAJI R K.Existence of Chaos in Two-prey One-predator System[J].Chaos Solitons Fractals,2003,17:639-649.
  • 10HUNKI Baek.Species Extinction and Permanence of an Impulsively Controlled Two-prey One-predator System with Seasonal Effects[J].BioSystems,2009,98:7-18.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部