期刊文献+

基于增量谐波平衡的参激系统非线性识别法 被引量:12

NONLINEARITY SYSTEM IDENTIFICATION METHOD WITH PARAMETRIC EXCITATION BASED ON THE INCREMENTAL HARMONIC BALANCE METHOD
下载PDF
导出
摘要 将增量谐波平衡法应用到非线性系统的建模和参数识别中,针对Mathieu-Duffing方程,推导了利用增量谐波平衡原理识别参数激励非线性系统参数的方法.该方法改进了增量谐波平衡方法的推导过程,通过数值模拟对比研究了谐波平衡非线性识别(harmonic balance nonlinearity identification,HBNID)和增量谐波平衡非线性识别(incremental harmonic balance nonlinearity identification,IHBNID)的效果,验证了增量谐波平衡非线性识别的有效性.结果表明,增量谐波平衡非线性识别的计算效率较高,计算精度和抗噪能力都优于谐波平衡非线性识别. In this paper,the incremental harmonic balance for nonlinearity identification(IHBNID) is presented for the modeling and parametric identification of nonlinear systems.The effects of harmonic balance nonlinearity identification(HBNID) and IHBNID are also studied and compared by using the numerical simulation. Considering the Mathieu-Duffing equation as an example,the effectiveness of the IHBNID can be verified. With the aid of the new method,the derivation procedures of the incremental harmonic balance method are simplified.The results show that the IHBNID is highly efficient for computation,and its performances excel in those of the HBNID,such as the computation accuracy and the noise resistance.
出处 《力学学报》 EI CSCD 北大核心 2010年第2期332-336,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10672141)~~
关键词 非线性识别 增量谐波平衡 参数激励 非线性系统 system modelling nonlinearity identification incremental harmonic balance parameter excitation nonlinear systems
  • 相关文献

参考文献12

  • 1Ljung L. System Identification: Theory for the user. New Jersey: Prentice-Hall, 1987.
  • 2Billings SA. Identification of nonlinear systems-A survey. In: Proceedings of IEEE, Part D. 1980, 127(1): 272-285.
  • 3Haber R, Unbehauen H. Structure identification of non-linear dynamic systems - A survey in input/output approaches, Automatica, 1990, 26(4): 651-677.
  • 4Casas RA, Jacobson CA, Rey G J, et al. Harmonic balance methods for nonlinear feedback identification. In: Proceeding of the Allerton Conference on Communication, Control and Computing, Allerton IL, September 1997.
  • 5Yasuda K, Kawamura S, Watanabe K. Identification of nonlinear multi-degree-of-freedom systems. JSME International Journal, 1988, 31(1): 8-15.
  • 6Yuan CM, Feeny BF. Parametric identification of chaotic systems. Journal of Vibration and Control, 1998, 4(4): 405-426.
  • 7Thothadri M, Casas RA, Moon FC, et al. Nonlinear system identification of Multi-Degree-of-Freedom systems. Nonlinear Dynamics, 2003, 32(3): 307-322.
  • 8Thothadri M, Moon FC. Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dynamics, 2005, 39(1-2): 63-77.
  • 9Lau SL, Cheung YK. Amplitude incremental variational principle for nonlinear vibration of elastic system. ASME Journal of Applied Mechanics, 1981, 48:959-964.
  • 10Cheung YK, Chen SH, Lau SL. Application of the incremental harmonic balance method to cubic nonlinearity systems. Journal of Sound and Vibration, 1990, 140(2): 273-286.

同被引文献106

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部