摘要
基于Mignotte列提出了一个加权门限秘密共享方案。当成员权重之和大于或等于门限值时,就能够恢复秘密,而成员权重之和小于门限值时则不能。方案中利用Mignotte列的特殊数学性质对权重方案进行转化,使得每个参与者无论权重如何只需各自产生一个私钥利用公开信息就可以得到各自的秘密份额,而无须传递任何秘密信息。与基于Lagrange插值公式的加权秘密共享方案相比,该方案产生的秘密信息较少,计算复杂度要明显降低。
This paper proposed a weighted threshold secret sharing scheme based on Mignotte sequence.When the sum of weights of the participants was greater than or equal to the threshold value,they could recover the secret,otherwise they could not.Using the special mathematical properties of Mignotte sequence to transform weighted scheme,cause no matter how the weight of the participant was,each participant could obtain secret share only need one private key which generated by themselves with public information,and needn't transfer any secret information.Compared with the scheme which based on polynomial interpolation,the scheme significantly reduced the secret information,and computational complexity to be significantly lower.
出处
《计算机应用研究》
CSCD
北大核心
2010年第4期1505-1507,共3页
Application Research of Computers
基金
安徽省自然科学基金资助项目(090412051)
广东省教育部产学研结合项目(2008B0905002400)