期刊文献+

基于Mignotte列的加权门限秘密共享方案 被引量:1

Weighted threshold secret sharing scheme based on Mignotte sequence
下载PDF
导出
摘要 基于Mignotte列提出了一个加权门限秘密共享方案。当成员权重之和大于或等于门限值时,就能够恢复秘密,而成员权重之和小于门限值时则不能。方案中利用Mignotte列的特殊数学性质对权重方案进行转化,使得每个参与者无论权重如何只需各自产生一个私钥利用公开信息就可以得到各自的秘密份额,而无须传递任何秘密信息。与基于Lagrange插值公式的加权秘密共享方案相比,该方案产生的秘密信息较少,计算复杂度要明显降低。 This paper proposed a weighted threshold secret sharing scheme based on Mignotte sequence.When the sum of weights of the participants was greater than or equal to the threshold value,they could recover the secret,otherwise they could not.Using the special mathematical properties of Mignotte sequence to transform weighted scheme,cause no matter how the weight of the participant was,each participant could obtain secret share only need one private key which generated by themselves with public information,and needn't transfer any secret information.Compared with the scheme which based on polynomial interpolation,the scheme significantly reduced the secret information,and computational complexity to be significantly lower.
作者 杨宇 侯整风
出处 《计算机应用研究》 CSCD 北大核心 2010年第4期1505-1507,共3页 Application Research of Computers
基金 安徽省自然科学基金资助项目(090412051) 广东省教育部产学研结合项目(2008B0905002400)
关键词 秘密共享 门限秘密共享 中国剩余定理 加权门限 Mignotte列 secret sharing threshold secret sharing Chinese remainder theorem weighted threshold Mignotte sequence
  • 相关文献

参考文献8

  • 1SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 2BLAKLEY G R.Safeguarding cryptographic keys[C]// Proc of National Computer Conference.Montvale,NJ:AFIPS Press,1979:313-317.
  • 3ASMUTH C,BLOOM J.A modular approach to key safeguarding[J].IEEE Trans on Information Theory,1983,IT-29(2):101-105.
  • 4MIGNOTTE M.How to share a secret[J].Lecture Notes in Computer Science,1983,149(2):371-375.
  • 5HWANG R J,CHANG C C.An on-line secret sharing scheme for muti-secrets[J].Computer Communications,1998,21(13):1170-1176.
  • 6MORILLO P,PADR′O C,S′AEZ G,et al.Weighted threshold secret sharing schemes[J].Inform Process Lett.,1999,70(5):211-216.
  • 7黄东平,刘铎,戴一奇.加权门限秘密共享[J].计算机研究与发展,2007,44(8):1378-1382. 被引量:9
  • 8IFTENE S,GRINDEI M.Weighted threshold RSA based on the Chinese remainder theorem[C]// Proc of the 9th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.Washing DC:IEEE Computer Society,2007:175-181.

二级参考文献11

  • 1A Shamir.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 2G R Blakley.Safeguarding cryptographic keys[C].In:Proc of National Computer Conference.Montvale,NJ:AFIPS Press,1979.313-317.
  • 3M Stadler.Publicly verifiable secret sharing[C].In:Proc of Advances in Cryptology-Eurocrypt' 96.Berlin:Springer-Verlag,1996.190-199.
  • 4C Asmuth,J Bloom.A modular approach to key safeguarding[J].IEEE Trans on Information Theory,1983,29(2):208-210.
  • 5R J Hwang,C C Chang.An improved threshold scheme based on modular arithmetic[J].Journal of Information Science and Engineering,1999,15(5):691-699.
  • 6A Aho,J Hopcroft,J Ullman.The Design and Analysis of Computer Algorithms[M].Reading,MA:Addison-Wesley,1974.
  • 7C W Chan,C C Chang.A scheme for threshold multi-secret sharing[J].Applied Mathematics and Computation,2005,166(1):1-14.
  • 8T Y Chang,M S Hwang,et al.An improvement on the Lin-Wu (t,n) threshold verifiable multi-secret sharing scheme[J].Applied Mathematics and Computation,2005,163 (1):169-178.
  • 9P Morillo,C Padró,et al.Weighted threshold secret sharing schemes[J].Information Processing Letters,1999,70 (5):211-216.
  • 10H M Sun,B L Chen.Weighted decomposition construction for perfect secret sharing schemes[J].Computers and Mathematics with Applications,2002,43(6/7):877-887.

共引文献8

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部