期刊文献+

新的噪声污染灰度图像边缘检测方法 被引量:1

New method for edge detection of noisy gray scale image
下载PDF
导出
摘要 传统的图像边缘检测方法由于引入了各种微分运算,因此用于噪声图像边缘检测时对噪声极度敏感。针对这一问题,提出了一种基于独立分量分析技术的噪声图像边缘检测方法,该算法通过计算数据之间的高阶统计信息,提取特征模板,然后将被高斯噪声污染的灰度图像与这些模板逐个匹配,提取出边缘成分。实验结果表明,基于独立分量分析技术的模板匹配方法自适应强,复杂度低,是一种有效的高斯噪声污染灰度图像边缘检测方法。 The normal methods with different algorithm are very sensitive to noise in edge detection.According to this problem,a new edge detection method for noisy gray scale image based on Independent Component Analysis (ICA) is proposed.The methods extract pattern template by calculating the higher statistical information of image data.Then a gray scale image contaminated by Gaussian noise is transformed into a pattern map by pattern matching.Thus the edges can be easily detected from pattern map.The experiments show that the proposed algorithm is a valid method of edge detection for image contaminated by Gaussian Noise.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第11期183-185,共3页 Computer Engineering and Applications
基金 西南科技大学青年预研基金No.07zx3112~~
关键词 边缘检测 噪声图像 独立分量分析 特征模板 edge detection noisy image Independent Component Analysis(ICA) pattern template
  • 相关文献

参考文献7

  • 1Siddique J I,Barner K E.Wavelet-based multi-resolution edge Detection utilizing gray level edge maps[C]//Proceedings of IPCIP'98 International Conference on Image Processing.Los Alamitos,USA:IEEE Comput Soc,1998:550-554.
  • 2Saleem M,Touqir I,Siddiqui A M.Novel edge detection[C]//2007 4th International Conference on Information Technology New Gen-erations.USA:IEEE Comput Soc,2007.
  • 3Hyvarinen A,Karhunen J,Oja E.Independent component analysis[M].New York:John Wiley,2001.
  • 4陈红艳,付毓生,张睿,皮亦鸣.基于ICA-SCS算法的极化SAR图像相干斑抑制[J].电子与信息学报,2007,29(4):819-821. 被引量:6
  • 5Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6).
  • 6Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].Neural Processing Letters,1999,10(3):1-5.
  • 7Chen Yenwei,Zeng Xiangyan,Lu Hanqing.Edge detection and texture segmentation based on independent component analysis[C]// 16th International Conference on Pattern Recongnition,2002,3:351-354.

二级参考文献7

  • 1田金凤,皮亦鸣.用一种新的独立分量分析算法实现极化SAR图像相干斑抑制[J].雷达科学与技术,2005,3(1):31-35. 被引量:4
  • 2Lee J S and Jurkevich I.Speckle filtering of synthetic aperture radar images:A review.Remote Sensing Reviews,1994,8(4):313-340.
  • 3Hyvarinen A,et al..Independent Component Analysis.New York:John Wiley,2001,chapter 1.
  • 4Hyvarinen A.Noisy independent component analysis,maximum likelihood estimation,and competitive learning.IEEE International Conference on Neural Networks Conference Proceedings,Anchorage,AK,USA,IEEE World Congress on Computational Intelligence,1998,vol.3:2282-2287.
  • 5Pi Yi-ming,et al..Polarimetric speckle reduction using multitexture maximum likelihood method.Electronics Letters,2003,39(18):1348-1349.
  • 6Arsenault H H and April G.Properties of speckle integrated with a finite aperture and logarithmically transformed.Journal Optical Society America,1976,66(11):1160-1163.
  • 7Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis.Neural Processing Letters,1999,10(3):626-634.

共引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部