期刊文献+

基于超复数计算的3D径向坐标可视化映射方法

3D radial coordinate visualization method by hypercomplex
下载PDF
导出
摘要 提出一种多维数据3D空间可视化方法。在二维径向坐标映射基础上,引入雷达图的面积特征作为第三维,构成三维径向坐标映射。基于超复数实现径向坐标在3D空间的计算。实验结果表明,三维映射较二维映射更能反映数据结构信息,有效处理了二维径向坐标映射中映射数据点易堆叠的问题。 A multidimensional visualization technique that creates a 3D representation of n-dimensional data is proposed. The area of radar chart is introduced to 2D radial coordinate visualization to expand it to 3D space. The projection of 3D radial coordinate visualization is computed by hypercomplex matrix. Compared to 2D projection, which visual cluttering and object occlusion are still a problem, the 3D projection conveys more information, giving the user more control of the visual representation.
出处 《燕山大学学报》 CAS 2010年第2期123-127,共5页 Journal of Yanshan University
基金 国家自然科学基金资助项目(60904100)
关键词 径向坐标 三维映射 超复数 可视化 radial coordinate 3D projection hypercomplex visualization
  • 相关文献

参考文献10

  • 1Ali J.Cognitive support through visualization and focus specification for understanding large class libraries[J].Journal of Visual Languages and Computing,20093 (1):50-59.
  • 2Wong Pak Chung,Bergeron R D.30 years of multidimensional multivariate visualization[M]//Scientific Visualization,Overviews,Methodologies,and Techniques.Washington,DC:IEEE Computer Society,1997:3-33.
  • 3Dzemyda G.Multidimensional data visualization in the statistical analysis of curricula[J].Computational Statistics and Data Analysis,2005,49 (1):265-281.
  • 4Hoffman P,Grinstein G,Marx K,et al..DNA visual and analytic data mining[C] //Proceedings of the 8th Conference on Visualization,Phoenix,1997:437.
  • 5Hoffman P,Grinstein G,Pinkney D.Dimensional anchors:a graphic primitive for multidimensional multivariate information visualizations[C] //Proc of the NPIV,Kansas City,1999:9-16.
  • 6Grinstein G,Hoffman G,Pickett R.Benchmark development for the evaluation of visualization for data mining[M] //Fayyad U,Grinstein G,Wierse A.Information Visualization in Data Mining and Knowledge Discovery.Morgan Kaufmann Publishers Inc,San Francisco,2001:129-176.
  • 7Hoffman P,Grinstein G.A survey of visualizations for high-dimensional data mining[M] //Fayyad U,Grinstein G,Wierse A.Information Visualisation in Data Mining and Knowledge Discovery.San Francisco:Morgan Kaufmann Publishers,2001:47-82.
  • 8洪文学,高海波,崔建新,李昕,季淑梅.多元图图形基元和特征基元提取与表示方法[J].燕山大学学报,2008,32(5):405-411. 被引量:7
  • 9孟辉,洪文学,宋佳霖,王立强.基于多元图形特征融合原理的降维方法研究[J].燕山大学学报,2008,32(5):445-450. 被引量:4
  • 10Wolf LA.Similarity of matrices in which elements are real quaternions[J].Real Quaternion Matrices,1936:737-743.

二级参考文献13

  • 1T.Pavlidis著,张寿萱等译.结构模式识别[M].上海:上海科学技术文献出版社,1981
  • 2Gonzalez R C,Thomason M G.句法模式识别[M].濮群,徐凤家,徐光佑,译.北京:清华大学出版社,1984.
  • 3Elzbieta PeRkalska, Robert P W Duin, Pavel Paclik. Prototype selection for dissimilarity-based classifiers [J]. Pattern Recognition 2006,39 (2): 189-208.
  • 4Terry Caelli. Structural, syntactic and statistical pattern recognition [M]. Berlin/Heidelberg: Springer, 2002.
  • 5Menahem Friedman, Abraham Kandel. Introduction to pattern recognition: statistical, structural, neural, and fuzzy logic approaches [M]. Singapore: World Scientific, 1999: 243.
  • 6Morton Nadler, Eric P Smith. Pattern recognition engineering. NewYork: Wiley, 1993: 152.
  • 7Antonio Plaza. Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43 (3): 466-479.
  • 8Geng X, Zhan D C, Zhou Z H. Supervised nonlinear dimensionality reduction for visualization and classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005,35 (6): 1098-1107.
  • 9Ming Dong, Ravi Kothari. Feature subset selection using a new definition ofclassifiability[J].Pattern Recognition Letters, 2003,24 (9-10): 1215-1222.
  • 10Ah-Hwee Tan, Hong Pan. Predictive neural networks for gene expression data analysis [J]. Neural Networks, 2005,18 (3): 297-306.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部