期刊文献+

基于粗糙集和模糊kohonen聚类网络的多传感器数据融合 被引量:17

Multi-sensor information fusion based on rough set and fuzzy Kohonen clus-tering network
下载PDF
导出
摘要 多传感器数据融合的难点在于传感器聚类状态的切换,即在某一时刻该传感器应该往哪个方向融合数据的问题。利用粗糙集进行知识的获取,把54个传感器1天内的可融合的典型聚类分布作为样本空间形成"数据-融合分布"的决策表,然后对一个月的数据根据粗糙集的知识约简方法,去掉冗余的属性和样本。利用模糊kohonen聚类网络进行聚类分析,最后形成传感器数据融合的分布规则.实验证明该模型具有很好的分类效率,可以快速实现传感器聚类分布的判断。 The difficulties of fusing Multi-sensor data lie in the switching of the state of sensor clusters.That is,at a given moment which direction the sensor should fuse data into.In this article,first the rough set is used for access of knowledge.The typical clustering distributions of 54 sensors within one day are regarded as sample room for the decision-making table of the "data -fusion distribution".Next,based on rough set of method of simplified knowledge,for one month date,removed redundant properties and samples.Then,the fuzzy Kohonen clustering network was using to analyze clustering.And finally the patterns of multi-sensor data fusion distribution are formed.The model is proved experimentally to be efficient in classification and rapid in sensor clustering distribution decide.
出处 《电子测量与仪器学报》 CSCD 2010年第3期218-223,共6页 Journal of Electronic Measurement and Instrumentation
关键词 粗糙集 神经网络 数据融合 传感器网络 TOSSIM rough set neural network data fusion sensor net Tossiom
  • 相关文献

参考文献6

二级参考文献44

共引文献60

同被引文献186

引证文献17

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部