期刊文献+

关联规则算法的研究及其在教学评价中的应用 被引量:13

Research of Association Rules and Application in Teaching Evaluation System
下载PDF
导出
摘要 对Apriori关联算法进行了研究和改进,对算法改进前后的性能进行了比较,结果表明改进后的算法比Apriori算法的执行效率高;并以学生评教为例,对以往大量数据进行关联分析,建立了基于预处理关联规则的评价指标体系,为教学评价的科学性提供了有力依据. Apriori algorithm is researched and improved, the fore-and-aft performance of the algorithm is compared, and the result proves the improved algorithm is more efficient than Apriori algorithm. Taking student evaluation as example, a large number of data are analyzed connectedly, an evaluation index system based on preprocessing association rules is established, which provides scientific basis for teaching evaluation.
出处 《烟台大学学报(自然科学与工程版)》 CAS 北大核心 2010年第2期127-131,共5页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 烟台大学青年基金资助项目(DP07Z1)
关键词 数据挖掘 关联规则 APRIORI算法 教学评价 指标体系 data mining association rules Apriori algorithm teaching evaluation index system
  • 相关文献

参考文献4

二级参考文献14

  • 1彭玉青,张红梅,何华,顾军华.数据挖掘技术及其在教学中的应用[J].河北科技大学学报,2001,22(4):21-24. 被引量:41
  • 2Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases [C].Proceedings of the 21st International Conference on Very Large Database, 1995.
  • 3Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules [C]. Proceedings of ACM SIGMOD International Conference on Management of Data, 1995:175-186.
  • 4Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [C]. Proc of the 20th Int'1 Conf on Very large Databases. Santiago, 1994:478-499.
  • 5Toivonen H. Sampling large databases for association rules[C]. Proceedings of the 22nd International Conference on Very Large Database. Bombay, 1996.
  • 6Lin J L, Dunham M H. Mining association rules: Antiskew algorithms[C]. Proceedings of the International Conference on Data Engingeering. Florida, 1998.
  • 7Brin S, Motwani R, Ullman J D, et al. Dynamic Itemset counting andlimplication rules for market basket data[C].In ACM SICMOD International Conference on the Management of Data. 1997.
  • 8Brin S, Motwani R, Silverstein C. Beyond market baskets: generlizing association rules to correlations [C]. Proceedings of the ACM SIGMOD, 1996:255-276.
  • 9Mannila H, Toivonen H, Verkamo A. Efficient algorithm for discovering association rules [C]. AAAI Workshop on Knowledge Discovery in Databases, 1994:181-192.
  • 10曾黄麟.基于粗集理论的机器学习与推理[J].控制与决策,1997,12(6):708-711. 被引量:13

共引文献20

同被引文献83

引证文献13

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部