摘要
A three-dimensional fluid model for surface-wave plasma (SWP), to investigate the discharge characteristics of a rectangular SWP source working in a steady state, was presented. The simulation is performed for different gas pressures in argon and different deposited powers. The results showed that there is a peak of plasma density at a distance of 2 cm to 3 cm from the plasma-quartz interface whose position depends mainly on the gas pressure but not the deposited power. The spatial distributions of plasma parameters and their dependence on the gas pressure and deposited power are also presented and discussed. Using this model a good agreement between the simulation results and the available experimental data is obtained.
A three-dimensional fluid model for surface-wave plasma (SWP), to investigate the discharge characteristics of a rectangular SWP source working in a steady state, was presented. The simulation is performed for different gas pressures in argon and different deposited powers. The results showed that there is a peak of plasma density at a distance of 2 cm to 3 cm from the plasma-quartz interface whose position depends mainly on the gas pressure but not the deposited power. The spatial distributions of plasma parameters and their dependence on the gas pressure and deposited power are also presented and discussed. Using this model a good agreement between the simulation results and the available experimental data is obtained.