期刊文献+

一种基于特征自动选取的跟踪算法 被引量:3

Object Tracking Algorithm Based on Adaptive Feature Selection
原文传递
导出
摘要 在复杂的环境下,基于单一特征的视觉跟踪算法,往往不能满足实际环境的需要,对此文中提出了一种基于特征自动选取的跟踪方法。考虑到不同特征在不同场景下对目标与背景的区分能力的不同,重新定义了适合跟踪的背景区域,并在此基础上提出了特征自动选取的策略。基于此策略,利用目标的颜色特征和纹理特征,具体实现了特征自动选取的跟踪算法。实验结果证明了该策略的可行性。 In this paper,a scheme based on adaptive selection of proper features for visual tracking is proposed.The discriminability of each cue should be taken into account in the tracking process,the background region suitable for the tracking is re-defined,and a strategy for features selection is proposed.The color cue and the LBP cue are also employed to implement the tracking algorithm.The experiment result indicates that the proposed method is reliable and effective.
出处 《通信技术》 2010年第3期128-130,共3页 Communications Technology
关键词 视觉跟踪 均值偏移 特征选择 广义距离 visual tracking mean shift feature selection generalized distance
  • 相关文献

参考文献8

二级参考文献47

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2蔡志武,赵东明.UKF滤波器性能分析及其在轨道计算中的仿真试验[J].武汉大学学报(信息科学版),2006,31(2):180-183. 被引量:13
  • 3Simon J. Julier. Unscented Filtering and Nonlinear Estimation in the pro of the ieee, vol. 92, No 3, March 2004.
  • 4Tarn T, Zarbosky J. A practical non-driving filter. AIAA Journal, 1970, 8 (06) :1127-1133.
  • 5Bellanger P R. Estimation of Noise Covariance Matrices for a Linear Time Vary Stochastic Process[J].Automatica, 1974(10): 267-275.
  • 6Carrew B, Bellanger P. Identification of Optimal Filter Steady State Gain for Systems with Unknown Noise Parameters[J]. IEEE Trans. Automatic Control, 1973(18):582-587.
  • 7Mehra R K. On the Identification of Variance and Adaptive Kalman Filtering[J]. IEEE Trans. on Automatic Control, 1970(15): 175-184.
  • 8Mehra R K. Appoaches to Adaptive Filtering[J].IEEE Trans. on Automatic Control, 1972(17):693-698.
  • 9Myers K A, Taply B D. Adaptive Sequential Estimation with Unknown Noise Statistics[J].IEEE Trans. on Automatic Control, 1976(21):520-523.
  • 10Hu Congwei,Chen wu, Chen Yongqi, et al. Adaptive Kalman Filterling for Vehicle Narigation[J].Journal of Gbobal Positioning System, 2003(02):42-47.

共引文献91

同被引文献17

  • 1LOWE D.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal ofComputer Vision,2004,60(02):91-110.
  • 2CHEN A H,ZHU M,WANG Y H,et al.Mean Shift TrackingCombining SIFT[C]//IEEE.9th InternationalConference on ICSP.Germany:IEEE,2008:1532-1535.
  • 3RUF B,KOKIOPOULOU E,DETYNIECKI M.Mobile MuseumGuide based on Fast SIFT Recognition[C]//6thInternational Workshop on Adaptive MultimediaRetrieval.Berlin,Germany:Computer Science,2008:26–27.
  • 4BAY H,ESS A,TUYTELAARS T,et al.Speeded-Up RobustFeatures(SURF)[J].Computer Vision and ImageUnderstanding,2008,110(03):346-359.
  • 5RODRIGUEZ D,AOUF N.Robust Harris-SURF Features forRobotic Vision based Navigation[C]//IEEE.International IEEE Conference on IntelligentTransportation Systems.Madeira Island,Portugal:IEEE,2010:1160-1165.
  • 6FISCHLER M A,BOLLES R C.Random Sample Consensus:a Paradigm Model Fitting with Applications to ImageAnalysis and Automated Cartography[J].Communications of the Association of ComputingMachinery,1981,24(06):381–395.
  • 7ZHANG Z J,CAO C X,ZHANG R J,et al.Video CopyDetection based on Speeded Up Robust Features andLocality Sensitive Hashing[C]//IEEE.IEEEInternational Conference on Automation andLogistics.USA:IEEE,2010:13-18.
  • 8张成,杨淑莹.基于序列图像的粒子滤波跟踪算法[J].天津理工大学学报,2007,23(6):46-49. 被引量:1
  • 9张琪,胡昌华,乔玉坤.基于权值选择的粒子滤波算法研究[J].控制与决策,2008,23(1):117-120. 被引量:45
  • 10张慧颖.基于灰靶决策的多指标评判法及其在公路网评价中的应用[J].数学的实践与认识,2008,38(10):31-38. 被引量:13

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部