期刊文献+

一类Liénard方程反周期解的存在性与唯一性

Existence and uniqueness of anti-periodic solutions for a kind of Liénard equation with bounded or unbounded delays
下载PDF
导出
摘要 利用Leray-Schauder度理论研究二阶Liénard方程x″+f1(t,x)x'+f2(x)(x')2+g1(t,x(t-τ(t)))+h(t)∫∞0k(s)g2(x(t-s))ds=p(t)反周期解的存在性和唯一性. In this paper, we use Leray-Schauder degree theory to establish a new result on the existence and uniqueness of anti-periodic solutions for a kind of Lienard equation with bounded or unbounded delays as follows: x″+f1(t,x)x′+f2(x)(x′)^2+g1(t,x(t-τ(t)))+h(t)∫0∞k(s)g2(x(t-s))ds=p(t).
出处 《徐州师范大学学报(自然科学版)》 CAS 2010年第1期45-49,74,共6页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10961005) 广西师范大学研究生教育创新计划项目(2008106020701M234)
关键词 LIÉNARD方程 LERAY-SCHAUDER度 反周期解 Lienard equation Leray-Schauder degree anti-periodic solution
  • 相关文献

参考文献12

  • 1Shao J ianying,Wang Lijuan, Yu Yuehua, et al. Periodic solutions for a kind of Lienard equation with a deviating argument [J]. J Comput Appl Math,2009,228(1):174.
  • 2Liu Wenbin, Huang Lihong. Existence and uniqueness of periodic solutions for a kind of Li6nard equation with a deviating argument[J]. Appl Math Lett,2008,21(1) ..56.
  • 3Zhou Qiyuan,Long Fei. Existence and uniqueness of periodic solutions for a kind of Lienard equation with two deviating arguments[J]. J Comput Appl Math,2007,206(2) : 1127.
  • 4Lu Shiping,Ge Weigao. Periodic solutions for a kind of second order differential equation with multiple deviating arguments[J]. Appl Math Comput,2003,146 (1) .. 195.
  • 5陈太勇,刘文斌,张建军,章美月.Liénard方程反周期解的存在性[J].数学研究,2007,40(2):187-195. 被引量:6
  • 6Li Yaqiong,Huang Lihong. Anti-periodic solutions for a class of Lienard-type systems with continuously distributed delays[J]. Nonlinear Anal,2009,10(4):2127.
  • 7Liu Wenbin. Anti-periodic solutions for forced Rayleigh-type equations[J]. Nonlinear Anal, 2009,10 (5) :2850.
  • 8Chen Yuqing, Nieto J J,O'Regan D. Anti-periodic solutions for fully nonlinear first-order differential equations[J]. Math Comput Modelling, 2007,46(9/10) : 1183.
  • 9Wu Rui. An anti-periodic LaSalle oscillation theorem[J]. Appl Math Lett, 2008,21 (9) : 928.
  • 10Liu Wenbin. An anti-periodic LaSalle oscillation theorem for a class of functional differential equations[J]. J Comput Appl Math,2009,223(2) :1081.

二级参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部