期刊文献+

基于概率模型的行人四肢自遮挡的检测 被引量:3

Estimating the Pedestrian 3D Motion Indoor via Hybrid Tracking Model
下载PDF
导出
摘要 针对人体运动跟踪领域中的自遮挡现象,提出了一种基于概率模型的行人四肢自遮挡的检测算法.首先,该方法定义了基于马尔可夫模型的自遮挡状态概率模型;其次,利用椭圆肤色模型,定义了层次肤色模型;最后,通过上述模型,算法将行人四肢自遮挡状态的识别转换为计算自遮挡状态转换概率的过程.实验表明,该方法具有较高的准确性. Focusing on the problem of self-occlusion in the field of human motion tracking, the paper deals with an algorithm for detecting the pedestrian limbs self-occlusion probability model. First, the algorithm defines the self-occlusion state probability model based on a Markov model. Second, the paper proposes a hierarchical skin model using ellipse skin model. Last, the algorithm changes the detection of pedestrian limbs self-occlusion to the calculation of the self-occlusion state transition probability. The result of experiment shows that the algorithm has a higher accuracy.
出处 《自动化学报》 EI CSCD 北大核心 2010年第4期610-615,共6页 Acta Automatica Sinica
基金 国家自然科学基金(60672090)资助~~
关键词 自遮挡 马尔可夫模型 椭圆肤色模型 层次肤色模型 Self-occlusion, Markov model, ellipse skin model, hierarchical skin model
  • 相关文献

参考文献13

  • 1Moeslund T B, Granum E. A survey of computer vision- based human motion capture. Computer Vision and Image Understanding, 2001, 81(3): 231-268.
  • 2Moeslund T B, Hilton A, Kruger V. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 2006, 104(2): 90-126.
  • 3Agarwal A, Triggs B. 3D human pose from silhouettes by relevance vector regression. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 882-888.
  • 4Grauman K, Shaknarovich G, Darrell T. Inferring 3D structure with a statistical image-based shape model. In: Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE, 2003. 641--648.
  • 5庄严,战洪斌,王伟,王珂.基于加权颜色直方图和粒子滤波的彩色物体跟踪[J].控制与决策,2006,21(8):868-872. 被引量:20
  • 6Kehl R, Gool L V. Markerless tracking of complex human motions from multiple views. Computer Vision and Image Understanding, 2006, 104(2-3): 190-209.
  • 7Lu Y F, Wang L, Hartley R, Li H D, Shen C H. Multi-view human motion capture with an improved deformation skin model. In: Proceedings of IEEE Conference on the Digital Image Computing: Techniques and Applications. Washington D. C., USA: IEEE, 2008. 420-427.
  • 8Christoudias C M, Urtasun R, Kapoor A, Darrell T. Cotraining with noisy perceptual observations. In: Proceedings of the IEEE on International Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1-10.
  • 9Urtasun R, Fleet D J, Geiger A, Popovic J, Darrell T J, Lawrence N D. Topologically-constrained latent variable models. In: Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: IEEE, 2008. 1080-1087.
  • 10Urtasun R, Darrell T J. Sparse probabilistic regression for activity-independent human pose inference. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.

二级参考文献7

  • 1Treptow A, Zell A. Real-time Object Tracking for Soccer-robots without Color Information[J]. Robotics and Autonomous Systems, 2004, 48(1):41-48.
  • 2Bobick A, Wilson A. A State-based Technique for the Summarization and Recognition of Gesture [A]. Proc of Int Conf on Computer Vision [C]. Cambridge,Britain, 1995:382-388.
  • 3Isard M, Blake A. Condensation-conditional Density Propagation for Visual Tracking [J]. Int J of Computer Vision, 1998,29 (1) : 5-28.
  • 4Nummiaro K, Koller M E, Van G L. Object Tracking with an Adaptive Color-based Particle Filter[A]. Proc of the Symposium for Pattern Recognition of the DAGM, LNCS 2449 [C]. Switzerland: September,2002 : 353-360.
  • 5Olson T, Brill F. Moving Object Detection and Event Recognition Algorithms for Smart Cameras [A]. Proc of DARPA Image Understanding Workshop [C]. San Mateo: Morgan Kaufmann, 1997:159-175.
  • 6Friedman N, Russell S. Image Segmentation in Video Sequences: A Probabilistic Approach[A]. Proc of the 13th Conf on Uncertainty in Artificial Intelligence[C]. San Francisco, 1997: 175-181.
  • 7Coraluppi S, Grimmett D. Intraping Timing Issues in Multistatic Sonar Tracking [A]. Proc of the 7th Int Conf on Information Fusion [C]. Stockholm, 2001:510-517.

共引文献19

同被引文献23

  • 1张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 2Wang Li-Ming,Shi Jian-Bo,Song Gang,et al.Object detection combining recognition and segmentation[C]∥Proceedings of Eighth Asian Conference on Computer Vision.Berlin,Germany:Springer-Verlag,2007(4843):189-199
  • 3Leibe B,Seemann E,Schiele B.Pedestrian detection in crowded scenes[C]∥Preceedings of Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Soc,2005:878-885
  • 4Robles-De-La-Torre G,Sekuler R.Numerically estimating internal models of dynamic virtual objects[J].ACM Transactions on Applied Perception,2004,1(2):102-117
  • 5Itti L,Koch C,Niebur E.A Model of saliencybased visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259
  • 6Torralba A.Contextualpriming for object detection[J].International Journal of Computer Vision,2003,53(2):169-191
  • 7Porat M,Zeevi Y Y.The generalized gaborscheme of image representation in biological and machine vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(4):452-468
  • 8Shen Linlin,Bai Li.Mutualboostlearning for selecting gaborfeatures for face recognition[J].Pattern Recognition Letters,2006,27(15):1758-1767
  • 9Kuchi P,Gabbur P,Bhat P S,et al.Human face detection and tracking using skin color modeling and connected component operators[J].IETE Journal of Research,2002,48(3-4):289-293
  • 10Walther D.Interactions of visual attention and object recognition:computationalmodeling,algorithms,and psychophysics[D].Pasadena,California:California Institute of Technology,2006

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部