期刊文献+

多智能体社会进化算法的动力学分析

Dynamics Analysis of the Multi-Agent Social Evolutionary Algorithm
下载PDF
导出
摘要 通过一个简化的2-bit问题对多智能体社会进化算法(MASEA)中的进化算子及其组合进行形式化描述,分析了MASEA的全局动力学形态。针对算法中的进化算子建立数学模型,通过分析模型中各个不动点的吸引性,揭示出不同进化算子对动力学形态的影响,证明了算法MASEA的全局收敛性。 With a typical and simple 2-bit problem, the global dynamic shape of the multi-agent social evolutionary algorithm is comprehensively analyzed in this paper. The common evolution operators and their combinations are also formally described. Furthermore, a mathematical model is established based on the simplified MASEA. The effect that every evolutionary operator has on the dynamic shape is discovered by the attraction analysis of the fixed points in the models. The global convergence of MASEA is also proved for the 2-bit problem.
作者 潘晓英
出处 《计算机工程与科学》 CSCD 北大核心 2010年第6期74-76,共3页 Computer Engineering & Science
基金 西安邮电学院基金资助项目(000-1273)
关键词 多智能体社会进化算法 不动点 吸引点 吸引性 multi-agent social evolutionary algorithm fixed point attractive point attractiveness
  • 相关文献

参考文献6

  • 1Zhong Weieai, Liu Jing, Xue Mingzhi, et al. A Muhiagent Genetic Algorithm for Global Numerical Optimization [J]. IEEE Trans on Systems, Man and Cybernetics, 2004, 34 (2):1128-1141.
  • 2Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning[M]. Boston: Addison-Wesley Longman Publishing, 1989.
  • 3Vose M D. Generalizing the Notion of Scheme in Genetic Algorithms[J]. Artificial Intelligence, 1991,50(3) : 385-396.
  • 4Back T. Evolutionary Algorithms in Theory and Practice [M]. New-York: Oxford University Press, 1996.
  • 5Forrest S, Mitchell M. Relative Building-Block Fitness and the Building-Block Hypothesis[M] // Foundations of Genetic Algorithms 2. CA: Morgan Kaufmann, 1993.
  • 6Jansen T, Wegener I. Real Royal Road Functions Where Crossover Provably is Essential[J]. Discrete Applied Mathematics, 2005, 149(1) : 111-125.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部