摘要
研究了一种脑皮层功能柱的集中参数模型,分析了平衡点的稳定性,并给出了其Hopf分岔条件.数值仿真显示,该模型在不同参数条件下可以表现为多种不同的脑电波信号.通过改变外部输入脉冲密度,模型状态响应经历了稳定平衡点和极限环的过程,验证了其Hopf分岔的存在条件.对Hopf分岔的研究为进一步深入了解大脑的非线性结构提供了理论依据.
A class of cortical column models with lumped parameters was studied,where the stability of equilibrium point was analyzed with the conditions for Hopf bifurcation given.Numerical simulation showed that the model can generate several kinds of EEG-like waveforms with different parameters.Changing the external pulse density to be input,the state response of the model undergoes a change from stable point to limited cycle,thus verifying the existence conditions for Hopf bifurcation.The study on bifurcation of EEG provides theoretically further reference for grasping brain's nonlinear structure.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2010年第4期490-493,共4页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(50435040)
中央高校基本科研业务费资助项目(N090613001)
关键词
脑电模型
皮层功能柱
稳定性
HOPF分岔
electroencephalogram model
cortical column
stability
Hopf bifurcation