摘要
在物理学研究中,需要计算一些特殊实积分,这些积分按实积分计算比较麻烦,有些甚至不可能,但化为复积分,运用柯西积分定理及留数定理来计算简捷方便.给出了用复积分计算物理学中狄利克雷积分、菲涅耳积分、欧拉积分及开普勒积分等几种特殊实积分的方法.
Some particular real integrations have to be calculated in many physical problems,but it is difficult to directly integrate,even it is not integrable by using real integration method.But it is convenient when they are changed into complex integrations and by applying Cauchy integral theorem and residual theorem.Some calculations of particular real integration in physical problems,such as Dirichlet integration,Fresnel integration,Eular integration,Kepler integration are investigated in this paper.
出处
《菏泽学院学报》
2010年第2期28-31,共4页
Journal of Heze University
基金
甘肃省高校研究生导师科研基金资助项目(GJ0810-03)
关键词
复积分
实积分
狄利克雷积分
菲涅耳积分
欧拉积分
开普勒积分
complex integration
integration
Dirichlet integration
Fresnel integration
Eular integration
Kepler integration