摘要
基于有限元理论对阵列光纤和波导芯片粘接情况进行了建模与仿真,分析了在温度变化下不同粘接区域厚度的热应力和微位移的产生和分布,结果表明粘接界面的边缘区域对温度变化最敏感.根据光弹效应定性分析了粘接区域的应力双折射,并利用光束传播法计算了由此微位移所导致的光功率损耗,结果表明若以附加损耗小于0.15dB的标准考察,则必须要求粘胶厚度的理论值在16μm以内.总结了温度变化和在相同条件下不同粘胶厚度对平面光波导封装性能的影响规律.
To study the thermal effect of planar waveguide packaging properties, the situation of adhesive bonding is modeled by the finite element method,and the thermal stress and the axial micro-displacements of the adhesive are analyzed. The regular pattern of the adhesive stress birefringence is calculated qualitatively based on the basis of the photo-elastic theory, and the results show that the edge of the bonding interface region is the most sensitive to temperature ehange. The optieal power loss generated from the axial micro-shifts is also proposed by beam propagation method,and if the excess loss is 0.15 dB. It is found that the thickness of the adhesive should be less than 16μm. The influences of package performance following temperature changes and different thickness of the adhesive under the same conditions are also summarized.
出处
《光子学报》
EI
CAS
CSCD
北大核心
2010年第4期643-647,共5页
Acta Photonica Sinica
基金
国家自然科学基金重点项目(50735007)
国家高技术研究发展计划(2007AA04Z344)资助
关键词
有限元
平面光波导
光弹效应
光束传播法
Finite element method
Planar optical waveguide
The photo-elastic theory
Beam propagation method