期刊文献+

曲面扩散的变分水平集方法 被引量:1

A Variational Level Set Method for Surface Diffusion
下载PDF
导出
摘要 基于变分水平集方法提出了一种通用的曲面扩散变分模型,其数据项为演化曲面与原曲面的水平集函数Heaviside函数差的平方,规则项为基于整体曲率的通用函数,通过图像扩散模型中的总变差与该模型中的总曲率类比设计该规则项,以实现曲面扩散的任务。为了避免水平集函数的重新初始化,在本文的能量泛函中增加了水平集函数为符号距离函数的惩罚项。所得到的演化方程为4阶偏微分方程,对其对流项采用经典迎风差分格式离散,对其中的扩散项采用中心差分格式。最后通过数值算例验证了模型用于曲面光滑、边缘保持与边缘增强的可行性。 Based on variational level set method, a variational formulation is presented in this paper. The energy functional includes three parts. The first one is data term which is expressed as square of difference between Heavi- side function of the original level set function and the evolved level set function. The second part is a regularized term in general form which is expressed as total curvature similar to total variation term used in image diffusion. The third part is a penalty term to avoid re - initialization of level set function. The derived evolution equation is a fourth order partial differential equation which includes advection term and diffusion term. The advection part is diseretized by u- sing classic upwind difference scheme, and the diffusion part is diseretized by using central difference scheme. Finally, some numerical examples are presented to validate the model for surface diffusion, edge preserving and edge en- hancement.
出处 《计算机仿真》 CSCD 北大核心 2010年第4期240-244,共5页 Computer Simulation
关键词 曲面扩散 变分方法 水平集方法 总曲率 曲面演化 Surface diffusion Variational method Level set method Total curvature Surface evolution
  • 相关文献

参考文献15

  • 1U Clarenz, G Dziuk and M Rumpf. On generalized mean curvature flow in surface processing[ C]. In H Karcher and S Hildebrandt, editors, Geometric analysis and nonlinear partial differential equations, Springer, 2003. 217 -248.
  • 2G Xu, Q Zhang. A general framework for surface modeling using geometric partial differential equations[J]. Computer Aided Geometris Design, 2008,25 (3) : 181 - 202.
  • 3K Deckelnick, G Dziuk, C M Elliott. Computation of geometric partial differential equations and mean curvature flow [ J ]. Acta Numerica, 2005,14 : 139 - 232.
  • 4徐国良,张琴.计算几何中几何偏微分方程的构造[J].计算数学,2006,28(4):337-356. 被引量:6
  • 5S Osher, R Fedkiw. Level Set Methods and Dynamic Implicit Surfaces[ M]. Springer, 2002.
  • 6T Tasdizen, R T Whitaker, P Burchard and S Osher. Geometric Surface Processing via Normal Maps [ J ]. ACM Transactions on Graphics, 2003,22 (4) : 1012 - 1033.
  • 7T Tasdizen, R T Whitaker. Anisotropic Diffusion of Surface Normals for Feature Preserving Surface Reconstruction[ R]. Technical Report UUCS - 03 - 007, School of Computing, University of Utah, April 18, 2003.
  • 8M Elsey and S Esedoglu. Analogue of the Total Variation Denoising Model in the Context of Geometry Processing[ R]. CAM - Report 07 -31, August 2007.
  • 9P Perona and J Malik. Scale - Space and Edge Detection Using Anisotropic Diffusion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, July 1990,12 (7) : 629 - 639.
  • 10L Rudin, S Osher and E Fatemi. Nonlinear Total Variation Based Noise Removal Algorithms[ J]. Physiea D, 1992,60:259 - 268.

二级参考文献25

  • 1N.Andrei,Gradient flow algorithm for unconstrained optimization,unpublished manuscript,http://www.ici.ro/camo/neculai/anpaper.htm,2004.
  • 2B.Andrews,Contraction of convex hypersurface in Euclidean space,Calc.Var.& P.D.E,2(1994),151-171.
  • 3T.Aubin,Nonlinear Analysis on Manifolds.Monge-Ampère Equations,Springer-Verlag,New York,Heidelberg,Berlin,1982.
  • 4M.Botsch and L.Kobbelt,An intuitive framework for real-time freeform modeling,ACM Transaction on Graphics,23:3 (2004),630-634.Proceedings of the 2004 SIGGRAPH Conference.
  • 5Y.Chen,Y.Giga,and S.Goto,Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,J.Diff Geom,33 (1991),749-786.
  • 6B.Chow,Deforming convex hypersurfaces by the nth root of the Gauss curvature,J.Diff.Geom,22 (1985),117-138.
  • 7U.Clarenz,Enclosure theorems for extremals of elliptic parametric functionals,Calc.Var,15(2002),313-324.
  • 8U.Clarenz,G.Dziuk,and M.Rumpf,On generalized mean curvature flow in surface processing,In H.Karcher and S.Hildebrandt,editors,Geometric Analysis and Nonlinear Partial Differential Equations,pages 217-248.Springer,2003.
  • 9M.Droske and M.Rumpf,A level set formulation for Willmore flow,Interfaces and Free Boundaries,6:3(2004),361-378.
  • 10L.C.Evans and R.F.Gariepy,Measure Theory and Fine Properties of Functions,CRC Press,1992.

共引文献5

同被引文献12

  • 1Shaffer E, Garland M.Efficient adaptive simplification of massive meshes[C]//Proceedings of IEEE Visualiza- tion 2001, San Diego,2001 : 127-134.
  • 2Rossignac J.The 3D revolution:CAD access for all[C]// International Conference on Shape Modeling and Appli- cations, Aizu-Wakamatsu.Japan: IEEE Computer Society Press, 1997 : 64-70.
  • 3William S, Zarge J.Decimation of triangle meshes[J].Com- puter Graphics, 1992,26 (2) : 65-70.
  • 4Hoppe H, DeRose T, Duchamp T, et al.Mesh optimiza- tion[C]//Proceedings of the SIGGRAPH' 93,1993 : 19-26.
  • 5Hinker P, Hansen C.Geometry optimization[C]//Proceed- ings of the IEEE Visualization'93,1993 : 189-195.
  • 6Osher S,Fedkiw R,Ronald P.Level set methods and dy- namic implicit surfaces.[S.1.] : Springer-Verlag, 2000.
  • 7Whitaker R.A level-set approach to 3D reconstruction from range data[J].The International Journal of Computer Vision, 1998,29(3) :203-231.
  • 8Zhao H.Implicit and nonparametric shape reconstruction from unorganized data using a variation level set method[J]. Computer Vision and Image Understanding,2001,80(3) : 295-314.
  • 9Cignoni P, Rocchini C, Scopigno R.Metro: measuring er- ror on simplified surfaces[J].Computer Graphics Fo- rum, 1998,17(2) : 167-174.
  • 10陶志良,潘志庚,石教英.基于能量评估的网格简化算法及其应用[J].软件学报,1997,8(12):881-888. 被引量:42

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部