期刊文献+

平滑转移模型线性检验的可靠性研究 被引量:1

Reliability of linearity test for smooth transition models
下载PDF
导出
摘要 提出了将自助法(bootstrap)的不同变体应用于平滑转移自回归模型的线性检验,并通过蒙特卡罗实验分别考察其在误差项独立同分布和存在序列相关时的有限样本性质.重点研究了非线性参数和序列相关系数对检验水平和功效的影响.实验结果表明,基于自助法的线性检验在各样本容量下都具有更高的功效,并且可以很好地纠正基于极限分布理论的LST统计量的水平扭曲.本文还详细介绍快速了两阶段自助法(FDB)的基本思想和实现方法,模拟实验证明它比基本自助法具有更好的稳健性和收敛性. This paper applies Different variants of bootstrap methods to the linearity test of smooth transition autoregressive model and studies their finite sample properties under independent identical distribution and serial correlation through Monte Carlo experiments. The paper also puts emphasis on the impact of nonlinear parameters and correlation coefficient on the size and power properties of bootstrap linearity test. Experiment results show that for all sample size the bootstrap linearity test has better power properties and can correct size distortion of LST statistic based on limit distribution theory very well. Furthermore, the paper still proposes the basic idea and implementation framework of fast double bootstrap( FBD), and it is shown with experiment that the FBD is robust and has better convergent property than simple bootstrap method.
作者 马薇 袁铭
出处 《系统工程学报》 CSCD 北大核心 2010年第2期177-184,共8页 Journal of Systems Engineering
关键词 平滑转移自回归模型 线性检验 自助法 smooth transition autoregressive model(STAR) linearity test bootstrap method
  • 相关文献

参考文献15

  • 1Terasvirta T. Specification, estimation, and evaluation of smooth transition autoregressive models [ J]. Journal of the American Statistical Association, 1994, 89 (425) : 208 - 218.
  • 2Hansen B E. lnterence when a nuisance parameter is not identified under the null hypothesis [J]. Econometrica, 1996, 04 (2) : 413 -430.
  • 3Andrews D, Ploberger W. Optimal tests when a nuisance parameter is present only under the alternative [J]. Econometrica, 1994, 62(6) : 1383 -1414.
  • 4Terasvirta T. Modelling Economic Relationships with Smooth Transition Regressions [M]// Ullah A, Giles D E A. Handbook of Applied Economic Statistics, Oxford: Oxford University Press, 1998:507 -552.
  • 5van Dijk D, Terasvirta T, Franses P. Smooth transition autoregressive models-A survey of recent developments [ J ]. Econometric Reviews, 2002, 21(1) : 1 -47.
  • 6Luukkonen R, Saikkonen P, Terasvirta T. Testing linearity against smooth transition autoregressive models [ J]. Biometrika, 1998, 75(3): 491 -499.
  • 7Gonzaez A, Terasvirta T. Simulation-based finite sample linearity test against smooth transition models [J]. Oxford Bulletin of Economics and Statistics, 2006, 68( 1 ) : 797 -812.
  • 8Bradley E. Bootstrap methods: Another look at the jackknife[J]. The Annals of Statistics, 1979, 7(1) : 1 -26.
  • 9Davidson R, MacKinnon J. Bootstrap inference in econometric [J]. The Canadian Journal of Economies, 2002, 35 (4) : 615-645.
  • 10Davidson R, MacKinnon J. The power of bootstrap and asymptotic tests [ J ]. Journal of Econometrics, 2006, 133 (2) : 421-441.

二级参考文献19

  • 1施锡铨.关于Bootstrap的回顾[J].应用概率统计,1987,3(2):167-177.
  • 2Hendricks D. Evaluation value-at-risk using history data[J]. Economy Policy Review, 1996, 2: 39-70.
  • 3Efron B. Bootstrap methods: Another look at the Jackknife[J]. Ann. Statist, 1979, 7(1): 1-26.
  • 4Singh K. On the asymptotic accuracy of Efron's Bootstrap[J]. Ann. Statist, 1981, 9(6): 1187-1195.
  • 5Bickel P J, Freedman A. Some asymptotic theory for Bootstrap[J]. Ann. Statist, 1981, 9(6): 1196-1217.
  • 6Dowd K. Beyond Value at Risk[M]. New York: John Wiley & Sons, 1998.
  • 7Efron B. Better Bootstrap confidence intervals[J]. J. Amer. Statist. Assoc, 1987. 171-200.
  • 8Kupiec P. Techniques for verifying the accuracy of risk measurement models[ J]. Journal of Derivatives, 1995, 3: 73-84.
  • 9Mandelbrot B. The variation of certain speculative prices[J]. Journal of Business, 1963, 36: 394-419.
  • 10Engle R F. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50: 987-1007.

共引文献19

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部