摘要
采用热线风速仪对小喷嘴间距撞击流产生的径向射流的速度分布进行了实验研究.研究结果表明,径向射流在各个r.>2D的径向断面上的速度分布具有相似性,呈高斯分布.在撞击面上无因次径向射流速度随着无因次径向距离的增大先增大后减小,而与喷嘴直径(D)、喷嘴间距(L)和出口气速无关.无因次径向速度在达到最大值前,与无因次径向距离成正比,在达到最大值后,无因次径向速度与无因次径向距离的1.33次方成反比.在撞击面上径向射流速度的最大值与出口气速成正比,与无因次喷嘴间距的0.551次方成反比.当L/D<1时,无因次最大径向速度的位置随无因次喷嘴间距的增加而增加,当L/D>1时,无因次最大径向速度的位置保持不变.
The radial jet velocity distribution of two opposed jets has been studied by hot-wire anemometer (HWA). The results show that normalized radial velocities are similar in various radial sections when r〉2D and that radial velocity profiles can be described by a Gaussian distribution model. Normalized radial jet velocity at impinging plane first increases, and then decreases with the increase of normalized radial distance. Normalized radial jet velocity is independent of nozzle diameter, nozzle separation and exit velocity and proportional to dimensionless radial distance before it reaches the peak. And the normalized radial jet velocity is inversely proportional to the 1.33th power of dimensionless radial distance after it reaches the peak. The maximum radial jet velocity at impinging plane is proportional to exit velocity, and inversely proportional to the 0.55 lth power of dimensionless nozzle separation. The position of the maximum radial jet velocity increases with nozzle diameter. At L/D〈1, the position of the maximum radial jet velocity increases with nozzle separation, and at L/D 〉1, it remains constant.
出处
《燃烧科学与技术》
EI
CAS
CSCD
北大核心
2010年第2期165-169,共5页
Journal of Combustion Science and Technology
基金
国家重点基础研究发展计划(973)资助项目(2010CB227004)
教育部长江学者与创新团队发展计划资助项目(IRT0620)