期刊文献+

基于局部特征的遥感图像快速自动配准 被引量:6

Fast auto registration of remote sensing image based on local feature
下载PDF
导出
摘要 针对图像处理领域中遥感图像的配准问题,提出一种基于图像局部特征的快速、自动配准方法。该方法选取具有良好尺度、旋转不变性以及精确特征点定位能力的SIFT局部特征,使用其特征向量间的欧氏距离作为相似性度量进行特征点匹配,并依据仿射变换误差准则去除奇异匹配特征点对,采用仿射变换的几何模型,实现了遥感图像的快速自动配准。实验结果表明,方法是高效、精确以及稳定的。 The fast auto registration of remote sensing image is a very important problem.In this paper,local feature of image is utilized to realize the fast auto registration of remote sensing image.SIFT(Scale Invariant Feature Transform) local feature is chosen because of its scale invariance and the property of accurate key-point localization.The Euclidean distance between different SIFT feature vectors is defined as the measure of similarity to get the pre-matched key-point pairs.The affine transform model is used to realize the registration.In order to get the accurate affine transform parameter,the principal of affine transform error is used to get rid of mismatched key-point pairs from the pre-matched pairs.Lots of experiments are done and the result shows that the method proposed is effective,accurate and stable.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第13期161-163,201,共4页 Computer Engineering and Applications
基金 中科院研究项目资助
关键词 图像配准 局部特征 尺度空间 尺度不变特征转换(SIFT) image registration local feature scale space Scale Invariant Feature Transform(SIFT)
  • 相关文献

参考文献11

  • 1殷硕文.一种基于线特征的高分辨率遥感影像配准方法[J].测绘技术装备,2007,9(2):3-5. 被引量:6
  • 2Flusser J.Suk a moment-based approach to registration of images with affine geometric distortion[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(2):382-387.
  • 3黄勇,王建国,黄顺吉.SAR图像匹配算法及实现[J].信号处理,2003,19(2):179-181. 被引量:11
  • 4Mikolajczy K,Schmid C.A performance evaluation of local descriptors[J].IEEE Trons on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 5Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 6Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376.
  • 7章权兵,罗斌,韦穗,杨尚骏.基于仿射变换模型的图象特征点集配准方法研究[J].中国图象图形学报(A辑),2003,8(10):1121-1125. 被引量:17
  • 8Linderberg T.Scale-space theory:A basic tool for analyzing structures at different scales[J].Jonrnal of Applied Statistics,1994,21(2):224-270.
  • 9Beis,Lowe D G.Shape indexing using approximate nearest-neighbour search in high-dimensional spaces[C]//IEEE Conference on Computer Vision and Pattern Recngnition(CVPR),Puerto Rico,1997:1000-1006.
  • 10Fischler M A,Bolles R C.Random sample consensus:A paradigm for model fitting with applications to image analysis and automated eartography[J].Comm of the ACM,1981,24:381-395.

二级参考文献7

共引文献30

同被引文献38

  • 1周拥军,寇新建.基于坐标归一化和奇异值分解的直接线性变换解法[J].测绘科学,2008,33(S1):212-213. 被引量:6
  • 2杨耘,王树根,邱丹丹.基于规则的高分辨率影像港口识别模型[J].测绘信息与工程,2005,30(5):40-42. 被引量:8
  • 3朱兵,李金宗,陈爱军.基于知识的快速港口识别[J].计算机应用,2006,26(3):729-732. 被引量:13
  • 4Eric Chen.Quicklime VR-an image-based approach to virtual environment navigation[C] //Proc.of ACM SIG-GRAPH,1995.Los Angeles,1995:29-38.
  • 5Steven J Gortler,Radek Crzeszczuk,Richard Szeliski,et al.The lumigraph[C] //Proc.of ACM SIGGRAPH,1996.Los Angeles,1996:43-54.
  • 6Levoy M,Hanrahan P.Light field rendering[C] //Proc.of ACM SIGGRAPH,1996.Los Angeles,1996:31-42.
  • 7Anandan P.A computational framework and an algorithmfor the measurement of visual motion[J].International Journal of Computer Vision,1989,2(3):283-310.
  • 8Harris C,Stephens M.A combined comer and edge detector[C] //Proceedings of the Alvey Vision Conference,1988.Manchester,1988:147-151.
  • 9David Lowe.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 10Brown M,Szeliski R,Winder S.Multi-image matching using multi-scale oriented patches[C] //Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 5).San Diego,2005:510-517.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部