期刊文献+

基于自适应局部非线性回归的颜色校正算法 被引量:2

Color correction method based on self-adaptive local nonlinear regression
下载PDF
导出
摘要 颜色是图像的重要信息。许多颜色校正算法都采用精度较高的查找表法。为了更好地拟合颜色空间之间复杂的映射关系,在自适应局部线性回归颜色校正模型的基础上提出了基于自适应局部非线性回归的颜色校正模型,在小样本情况下,自适应地选择插值点的个数,利用局部非线性回归模型优化权值,建立三维的查找表,实现较好的颜色校正效果。实验证明基于自适应局部非线性回归的颜色校正模型的校正精度整体高于基于自适应局部线性回归的颜色校正模型的校正精度。 Color is important information of an image.Several color correction methods are used to establish Look-up table,which is one of popular ways for color reproduction,so that high accuracy can be achieved.A color correction method based on selfadaptive local nonlinear regression is presented,for nonlinear regression can better fit the complex mapping of color spaces.Under small sampling condition,the color correction method adaptively selects the most optimized neighborhood size and applies local nonlinear regression to optimize the weights,then establishes 3D Look-up table so that ideal performance can be achieved.The results of experiment show that the accuracy of color correction method based on self-adaptive local nonlinear regression is higher than that of the color correction model based on self-adaptive local linear regression.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第13期164-167,共4页 Computer Engineering and Applications
基金 国家自然科学基金重大项目No.60431020 国家自然科学基金No.60431020 No.60472036 北京市自然科学基金No.4092009~~
关键词 局部非线性回归 查找表 颜色校正 local nonlinear regression look-up table color correction
  • 相关文献

参考文献8

  • 1Li Feng.A fast color correction method based on image analysis[C]//Proceedings of 3rd International Conference on Image and Graphics,2004:108-111.
  • 2Mecocci A,Molinari G.Color recovery in outdoor environments:A novel integrated approach using retinex,gray world and stretching[C]//IEEE 6th Workshop on Multimedia Signal Processing,2004:75-78.
  • 3Maya R G.Simulating the effect of illumination using color transformations[J].Preceedings of SPIE-IS&T Electronic Imnging,SPIE,2005,5674:248-258.
  • 4丁二锐,曾平,王义峰.基于KPCA和ANFIS的色彩校正[J].西南交通大学学报,2007,42(1):24-28. 被引量:2
  • 5Bamard K.Computational color constancy:Taking theory into practice[D].Canada:Simon Fraser University,1995.
  • 6Daul C,Rosch R,Claus B.Building a color classification system for textured and hue homogeneous sudaces:System calibration and algorithm[J].Machine Vision and Applications,2000,12(3):137-148.
  • 7Maya R G.Custom color enhancements by statistical learning[C]//Proceedings of the IEEE International Conference on Image Processing,2005,3:11-14.
  • 8荆其诚.色度学[M].北京:科学出版社,1991(41-44).68-111.

二级参考文献12

  • 1杨延西,刘丁.基于ANFIS的温度传感器非线性校正方法[J].仪器仪表学报,2005,26(5):511-514. 被引量:17
  • 2JOVANOVIC B B,RELJIN I S,RELJIN I D.Modified ANFIS architecture-improving efficiency of ANFIS technique[C] //Proc.of 7th Seminar on Neural Network Applications in Electrical Engineering.Serbia and Montenegro:Institute of Electrical and Electronics Engineers Inc.,2004:215-220.
  • 3JANG,J S R.Input selection for ANFIS learning[C] //Proc.of the 1996 5th IEEE international conference on Fuzzy systems.New Orleans:IEEE Press,1996:1 493-1 499.
  • 4KIM C H,LEE J J.Adaptive network-based fuzzy inference system with pruning[C] //SICE Annual Conference.Tokyo:Soc.of Instrument and Control Eng.,2003:140-143.
  • 5KANG H R.Printer-related color processing techniques[C] //Proc.of SPIE.Washington:SPIE,1995,2 413:410-419.
  • 6JOU J M,KUANG S R,CHEN R D.A new efficient fuzzy algorithm for color correction[J].IEEE Transactions on Circuits and Systems,1999,46(6):773-775.
  • 7JANG J S R.ANFIS:adaptive-network-based fuzzy inference system[J].IEEE Transactions on Systems,Man and Cybernetics,1993,23(3):665-685.
  • 8PAVIA A R C,XU Jianwu,PRINCIPE J C.Kernel principal components are maximum entropy projections[C] //Proc.of 6th Int.Conference on Independent Component Analysis and Blind Source Separation.Berlin:Springer-Verlag,2006:846-853.
  • 9PEREZ-CRUZ F,BOUSQUET O.Kernel methods and their potential use in signal processing[J].IEEE Signal Processing Magazine,2004:57-65.
  • 10MULLER K R,MIKA S,RATSCH G,et al.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Network,2001,12(2):181-201.

共引文献21

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部