期刊文献+

基于经验模态分解滤波的低频振荡Prony分析 被引量:20

Prony analysis of low frequency oscillations based on empirical mode decomposition filtering
原文传递
导出
摘要 传统Prony法在分析低频振荡时对输入信号要求较高,存在着对噪声敏感的弱点.因此提出一种经验模态分解滤波和改进Prony法相结合的低频振荡分析方法.该方法先用经验模态分解对低频振荡信号进行自适应滤波,再用改进Prony法对滤波后的信号进行分析.其中,改进Prony法有效阶数用归一化奇异值法确定.将该方法分别用于分析试验信号和IEEE4机系统振荡信号,并与基于低通滤波器的Prony分析进行比较.结果表明,在较大噪声环境下,该方法仍然能相对准确的辨识出低频振荡主导模式,验证了其有效性. Since traditional Prony analysis of low frequency oscillations has strict requirements to the input signal and is sensitive to the noise of data,this paper proposes a empirical mode decomposition filtering and Prony analysis combined method for low frequency analysis. In this method,empirical mode decomposition is used to adaptively filter the noise of the input signals before improved Prony analysis is carried out. The order of improved Prony analysis is determined by the normalized singular value method. This method is applied to analyze the test signal and the IEEE 4-machine system oscillation signals,and compared with the Prony analysis based on low pass filter. The simulation shows the effectiveness of this method which indicates that the result of the analysis is good even in highly noisy environment.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第5期3531-3537,共7页 Acta Physica Sinica
基金 国家科技支撑计划项目(批准号:2008BAA13B01)资助的课题~~
关键词 低频振荡 经验模态分解 改进Prony法 归一化奇异值法 low frequency oscillation empirical mode decomposition improved Prony method normalized singular value method
  • 相关文献

参考文献10

二级参考文献100

共引文献367

同被引文献234

引证文献20

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部