摘要
针对多站雷达量测机动目标跟踪问题,提出了一种将平滑方法运用于典型的交互式多模型结构的跟踪算法。首先介绍了卡尔曼平滑器(KS),比较了不敏卡尔曼滤波(UKF)和不敏卡尔曼平滑(UKS)两种方法,引入并分析比较了IMMF和IMMS方法。同时,针对目标机动特性以及多雷达量测带来的非线性等问题,构造了多部雷达跟踪机动目标场景,进行了典型方法的比较和新方法的验证,实验结果验证了新方法的有效性。
This paper presented the problem of tracking radar measurements of maneuvering target, discussed the kalman smoother, introduced the smooth methods, compared the methods of Unscented Kalman filter with Unscented Kalman smoother, Interacting Multiple Model Filter(IMMF) and Interacting Multiple Model Smoother(IMMF) based on the Multiple Model idea. Meanwhile, for the problem of nonliner based on the radar measurements and the target charicterristic, designed the models of maneuvering target and several radar measurements, compared the classed methods and tested the new methods, experiment results show the effectiveness.
出处
《计算机科学》
CSCD
北大核心
2010年第5期206-209,共4页
Computer Science
基金
国家自然科学基金重点项目(60634030)资助