期刊文献+

基于UIMMS的多站雷达机动目标跟踪研究 被引量:1

UIMMS of Maneuverable Target Tracking for Multistatic Radar System
下载PDF
导出
摘要 针对多站雷达量测机动目标跟踪问题,提出了一种将平滑方法运用于典型的交互式多模型结构的跟踪算法。首先介绍了卡尔曼平滑器(KS),比较了不敏卡尔曼滤波(UKF)和不敏卡尔曼平滑(UKS)两种方法,引入并分析比较了IMMF和IMMS方法。同时,针对目标机动特性以及多雷达量测带来的非线性等问题,构造了多部雷达跟踪机动目标场景,进行了典型方法的比较和新方法的验证,实验结果验证了新方法的有效性。 This paper presented the problem of tracking radar measurements of maneuvering target, discussed the kalman smoother, introduced the smooth methods, compared the methods of Unscented Kalman filter with Unscented Kalman smoother, Interacting Multiple Model Filter(IMMF) and Interacting Multiple Model Smoother(IMMF) based on the Multiple Model idea. Meanwhile, for the problem of nonliner based on the radar measurements and the target charicterristic, designed the models of maneuvering target and several radar measurements, compared the classed methods and tested the new methods, experiment results show the effectiveness.
出处 《计算机科学》 CSCD 北大核心 2010年第5期206-209,共4页 Computer Science
基金 国家自然科学基金重点项目(60634030)资助
关键词 雷达量测 非线性滤波 不敏卡尔曼滤波 不敏卡尔曼平滑 交互式多模型 Radar measurements Nonlinear filtering UKF UKS Interacting multiple model
  • 相关文献

参考文献17

  • 1Nordsjo A E. A constrained Extended Kalman Filter for target tracking[J]. Proceedings of the IEEE, 2004.
  • 2Xiong K, Zhang H Y. Performance evaluation of UKF - based nonlinear filtering[J]. Automatica, 2006,2 (42) : 261-270.
  • 3Zhan R,Wan J. Iterated unscented Kalman filter for passive target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,7(43) : 1155-1163.
  • 4Deng Z L, Zhang H S, Liu S J, et al. Optimal and self tuning white noise estimators with applications to deconvolution and filtering problems [J]. Automatica, 1996,32(2):199-216.
  • 5邓自立,王莅辉.固定区间Kalman平滑新算法[J].控制理论与应用,2000,17(5):777-780. 被引量:6
  • 6孙书利 邓自立.极点配置固定区间kalman平滑器和wiener平滑器.自动化学报,2004,30(2):239-243.
  • 7孙书利.多模型多传感器信息融合Kalman平滑器[J].控制理论与应用,2005,22(2):211-217. 被引量:10
  • 8Sarkka S. Unscented Rauch-Tung-Striebel Smoother Automa - tic Control[J]. IEEE Transactions on, 2008,53 (3) : 845 - 849.
  • 9Juliet S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004,92(3) : 401-422.
  • 10Juliet S J, Uhlmann J K. Corrections to "Unscented Filtering and Nonlinear Estimation" [J]. Proceedings of the IEEE, 2004, 92(12) : 1958-1958.

二级参考文献24

  • 1邓自立,自动化学报,1999年,25卷,1期,35页
  • 2邓自立,1998中国控制与决策学术年会论文集,1998年,250页
  • 3Deng Z L,Automatica,1996年,32卷,2期,199页
  • 4BAR-SHALOM Y. On the track-to-track correlation problem [J].IEEE Trans on Automatic Control, 1981,26 ( 2 ): 571 - 572.
  • 5HASHMIPOUR H R, ROY S, LAUB A J. Decentralized structures for parallel Kalman Filtering [ J ]. IEEE Trans on Automatic Control,1988,33(1) :88 - 93.
  • 6CARLSON N A. Federated square root filter for decentralised parallel processes [ J ]. IEEE Trans on Aerospace and Electronic Systems,1990,26(3) :517 - 525.
  • 7KIM K H. Development of track to track fusion algorithm [ C ]//Proc of American Control Conference. Troy: Rensselaer Polytechnic Institute, 1994:1037 - 1041.
  • 8CHEN H,KIRUBARAJAN T,BAR-SHALOM Y.Performance limits of track-to-track fusion versus. centralized estimation: theory and application [ J ]. IEEE Trans on Aerospace and Electronic Systems,2003,39 (2): 386 - 398.
  • 9SAHA R K. An efficient algorithm for multisensor track fusion [ J].IEEE Trans on Aerospace and Electronic Systems, 1998, 34 ( 1 ):200 - 210.
  • 10QIANG Gan, HARRIS C J. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion [J]. IEEE Trans on Aerospace and Electronic Systems ,2001,37( 1 ):273- 280.

共引文献26

同被引文献16

  • 1曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报,2006,34(12):2138-2141. 被引量:27
  • 2S. Buzzi, M. Lops, L. Venturino, Efficient Bayesian TrackBefore-Detect [J]. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41 (3) :937-954.
  • 3R. Succcary, A. Cohen. A Dynamic Programming Algorithm for Point Target Detection: Practical Parameters for DPA [ C ]. Signal and Data Processing of Small Targets, SPIE, 2001, 4473: 96-100.
  • 4L. A. Johnston, V. Krishnamurthy, Performance analysis of a dynamic programming track before detect algorithm [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38( 1): 228-242.
  • 5H. Chen, Y. Bar-shalom. MDL Approach for Multiple Low Observable Track Initiation [ J ], IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 ( 3 ) : 862- 882.
  • 6T. Luginbuhl, P. Ainsleigh, S. Mathews, R.L. Streit, Accurate Likelihood Evaluation for Multiple Model PMHT Algorithms, Aerospace Conference, 2008 IEEE, 1-8 March 2008 : 1-11.
  • 7David F. Crouse, Marco Guerriero, Peter Willett, Roy Streit, Darin Dunham, A look at the PMHT, Proceedings of the 11th International Conference on Information Fusion, FUSION 2009,6-9 July 2009: 332-339.
  • 8S.J. Davey, M. G. Rutten, A Comparison of Three Algorithms for Tracking Dim Targets [ C ]. Information, Decision and Control, 2007, 342-347.
  • 9S. J. Davey, M. G. Rutten, B. Cheung, A Compar/son of Detection Performance for Several Track-Before-Detect Algorithms [ C ]. 11 th International Conference on Information Fusion, 2008, 1-8.
  • 10K.M. Alexiev, L.V. Bojilov, A Hough Transform Track Initiation Algorithm for Multiple Passive Sensors [ C ]. Proceedings of the Third International Conference on Multisource-Multisensor Information Fusion. 2000. TuB2-11- TUB2-16.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部