摘要
基于多重网格方法的思想,在二维非结构网格上建立了一种求解Euler方程的快速稳健间断Galerkin方法。采用Roe迎风型数值通量,时间步采用显式Runge-Kutta多步法推进。数值模拟了绕NACA0012翼型流场,并比较了单重网格算法和多重网格算法计算结果,表明该方法具有优良的加速收敛效果。
The goal of this paper is to investigate and develop a fast and robust algorithm for the solution to discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured using hierarchical basis functions.The methodology is developed for the two-dimension Euler equations using both Roe upwind flux and explicit Runge-Kutta multiple method in temporal step.The calculation result is presented for flow over a uniform flow over the NACA0012 airfoil,and compared with single-grid discontinuous Galerkin method.It demonstrates that the algorithm’s convergence rate is higher than single-grid discontinuous Galerkin method.
出处
《咸阳师范学院学报》
2010年第2期1-3,共3页
Journal of Xianyang Normal University
基金
咸阳师范学院重点建设课程基金项目(200812014)
咸阳师范学院科研基金项目(09XSYK204
09XSYK209)