期刊文献+

欧拉方程的多重网格间断Galerkin方法研究

Discontinuous Galerkin Using Multigrid for Solving Euler Equations
下载PDF
导出
摘要 基于多重网格方法的思想,在二维非结构网格上建立了一种求解Euler方程的快速稳健间断Galerkin方法。采用Roe迎风型数值通量,时间步采用显式Runge-Kutta多步法推进。数值模拟了绕NACA0012翼型流场,并比较了单重网格算法和多重网格算法计算结果,表明该方法具有优良的加速收敛效果。 The goal of this paper is to investigate and develop a fast and robust algorithm for the solution to discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured using hierarchical basis functions.The methodology is developed for the two-dimension Euler equations using both Roe upwind flux and explicit Runge-Kutta multiple method in temporal step.The calculation result is presented for flow over a uniform flow over the NACA0012 airfoil,and compared with single-grid discontinuous Galerkin method.It demonstrates that the algorithm’s convergence rate is higher than single-grid discontinuous Galerkin method.
出处 《咸阳师范学院学报》 2010年第2期1-3,共3页 Journal of Xianyang Normal University
基金 咸阳师范学院重点建设课程基金项目(200812014) 咸阳师范学院科研基金项目(09XSYK204 09XSYK209)
关键词 间断GALERKIN方法 多重网格方法 非结构网格 Roe迎风型数值通量 discontinuousgalerkin method multigrid method unstructured grids roe upwind flux
  • 相关文献

参考文献9

  • 1Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation [R].Los Alamos Scientific Laboratory, 1973,73: 479.
  • 2Cockbum B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems[J].Computational Physics, 1989,84: 90-113.
  • 3Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes [J].Computational Physics, 1988,77: 439-471.
  • 4Cockbum B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:general fi'amework [J].Mathematics of Computation,1989,52: 411-435.
  • 5Cockburn B, Hou S, Shu C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case [J].Mathematics of Computation, 1990, 54: 545-581.
  • 6Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J]. Computational Physics, 1998, 141: 199-224.
  • 7蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 8贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 9Jameson A, Yoon S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987 (7): 929-935.

二级参考文献29

  • 1Marinak M M, Haan S W, Tipton R E, Weber S V, Remington B A. Three-dimensional simulations of ablative hydrodynamic instabilities in indirectly driven targets [R]. UCRL-LR-105821-95-3, 168- 178.
  • 2Kershaw D S, Prasad M K, Shaw M J. Three-dimensional, Unstructured-mesh Eulerian hydrodynamics with the upwind, discontinuous finite element method [Z]. Preprint, 160 - 168.
  • 3Zhou Tie, Li Yinfan, Shu Chi-wang. Nmnerical comparison of WENO finite volume and Runge-Kutta Galerkin methods [J]. J Sci Computing, 2001, 16:145 - 171.
  • 4Reed N H, Hill T R. Triangle mesh methods for the Neutron transport equation [R]. Los Alamos Scientific Laboratory, Report LAUR-73-479, 1973.
  • 5Cockburn B, Shu C W. The Runge-Kutta local projection P1-discontinuous Galerkin method for scalar conservation law [J]. M2AN 1991,337: 337 - 361.
  • 6Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ:general framework [J]. Math Comp, 1989, 52: 411- 435.
  • 7Cockburn B, Lin S Y. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: onedimensional systems [J]. J Comp Phys, 1989, 84: 90- 113.
  • 8Cockburn B, Hou S C, Shu C W. TVB Runge-Kutta discontinuous Galerkin method for conservation laws Ⅳ: the multidimensional case [J]. J Comp Phys, 1990, 54:545 - 581.
  • 9Cockburn B, SHu C W. TVB Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems [J]. J Comp Phys, 1998, 144: 199-224.
  • 10Bassi F, Rebay S. High-order accurate discontinuous finite element solution of the 2D Euler equation [J]. J Compnt Phys, 1997,138:251 - 285.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部