期刊文献+

双正交对称双向小波的构造 被引量:2

Construction of Symmetric Bi-orthogonal Two-Direction Wavelet
下载PDF
导出
摘要 对任一双向加细函数φ(x)=Σk∈Zpk+φ(2x-k)+Σk∈Zpk-φ(2x-k),给出判断双向加细函数对称的简便条件,并得到由紧支撑双正交双向加细函数构造紧支撑双正交双向多尺度函数的方法,最后给出一类双正交对称双向加细函数对应的双正交对称双向小波的构造算法。 For any two-direction function Ф(x)=∑k∈Zpk^+Ф(2x-k)=∑k∈Pk^-Ф(2x-k),the simple conditions tojudge the two direction refinable funcion's symmetry is given. Further- more, the method for constructing a cornpaetly supported symmetric bi-orthogonal two direction refinable multi-scaling function by a compactly supported symmetric bi-orthogonal two direction refinable function is presented. Then, we will obtain the algorithm to construct a class of symmetric bi-orthogonal two-direction wavelets which corresponds to a symmetric bi-orthogonal two-direction refinable function.
出处 《龙岩学院学报》 2010年第2期9-12,共4页 Journal of Longyan University
关键词 双向加细函数 双向小波 对称性 双正交性 双向多尺度函数 two direction refinable function two-direction wavelet symmetry bi-orthogonal two direction refinable multi-scaling function
  • 相关文献

参考文献11

二级参考文献36

  • 1郭宝龙,郭雷.用扩散和集中神经网络区分图形与背景[J].科学通报,1994,39(19):1805-1808. 被引量:5
  • 2杨守志,彭立中.基于重数延长法提升加细向量函数的逼近阶[J].中国科学(A辑),2005,35(12):1347-1360. 被引量:3
  • 3Geronimo J, Hardin D P, Massopust P. Fractal functions and wavelet expansions based on several scaling functions [ J ]. Journal of Approximation Theory, 1994,75 (4) :373 - 401.
  • 4Strela V, Heller P N, Strang G, et al. The application of multiwavelet filterbanks to image processing [ J ]. IEEE Transactions Image Processing, 1999,8 (4) : 548 - 563.
  • 5Xia X G, Geronimo J S, Hardin D P, et al. Design of prefilters for discrete muhiwavelet transforms [ J ]. IEEE Transactions Signal Processing, 1996,44( 1 ) :25 -35.
  • 6Xia X G. A new prefiher design for discrete multiwavelet transforms[J]. IEEE Transactions Signal processing, 1998,46(6):1558 -1570.
  • 7Mallat S, Hwang Wen Liang. Singularity Detection and Processing with Wavelets [ J ]. IEEE Transactions on Information Theory, 1992,38(2) :617 -643.
  • 8Donoho D L. De-noising via soft-thresholding[J]. IEEE Transactions on Information Theory, 1992,41(3) : 613 -627.
  • 9徐铭陶,重庆大学学报,1996年,19卷,2期,1页
  • 10秦前清,实用小波分析,1994年

共引文献78

同被引文献23

  • 1杨守志,李尤发.具有高逼近阶和正则性的双向加细函数和双向小波[J].中国科学(A辑),2007,37(7):779-795. 被引量:30
  • 2Pravica D W,Randriampiry N,Spurr M J.Applications of an advanced differential equation in study of wavelets[J].Appl Comput Harmon Anal,2009,27:2-11.
  • 3Telesca L,Lapenna V,Alexis V.Multiresolution wavelet analysis or earthquakes[J].Chaos Solitons& Fractals,2004,22(3):741-748.
  • 4Tan H H,Shen L X,Tham J Y.New biorthogonal multiwavclcets for image compression[J] ,IEEE Trans Signal Process,1999,79(1):45-65.
  • 5Sen A K,Litak G,Taccani R,et al.Wavelet analysis of cycle-to-cycle pressure variation in an internal combustion engine[J].Chaos Solitons & Fraetals,2008,38(3):886-893.
  • 6Xia T,Jiang Q T.Optimal multifilter banks:design,related symmetric extension transform and application to imagc compression[J].IEEE Trans SP,1999,47(7):1 878-1 890.
  • 7Daubechies I.小波十讲[M].李建平,杨万年,译.北京:国防工业出版社,2004.
  • 8Jiang Q T.Parameterization of m-channel orthogonal multifilter banks[J].Advances in Computational mathematics,2000,12:189-211.
  • 9Chui C K,Lian J A.A study of orthngonal multi-wavelets[J].Appl Numer math,1996,20(3):273-298.
  • 10Lebrun J,Vetterli M.Iligh order balanced multiwavelets[C].Phoenix:In Proc IEEE int Conf Acoust Spceeh Signal Proce(ICASSP),1998,12-15.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部