期刊文献+

一种多样性保持的分布估计算法 被引量:15

An Estimation of Distribution Algorithm with Diversity Preservation
下载PDF
导出
摘要 针对传统分布估计算法中存在的早熟收敛问题,在讨论种群多样性保持方法和早熟原因的基础上,提出一种多样性保持的分布估计算法(EDA-DP),具体措施包括:根据混沌运动具有的随机性、遍历性、初值敏感性和规律性等特点引入混沌变异算子;根据个体适应度值和种群中各个体之间的距离信息自适应调整变异半径;根据种群中的个体浓度信息生成子代种群.基准测试函数的实验结果表明,EDA-DP能够有效防止早熟收敛,在提高解的精度和加快收敛速度方面均有所改善. In order to solve the premature convergence problem existing in the traditional estimation of distribution algorithm(EDA),based on the analysis of methods for diversity preservation and reasons for premature convergence,an estimation of distribution algorithm with diversity preservation(EDA-DP)is proposed.A chaotic mutation operator is introduced into EDA by taking advantage of the randomness,ergodicity,initial value sensitivity and regularity of chaos.The EDA-DP is able to adjust its mutation radius in an adaptive way according to the fitness value and the distance between each individual.Moreover,the EDA-DP is able to generate its offspring population by making use of the concentration inside the population.The EDA-DP is evaluated on a set of benchmark problems and the experimental results show that the precision of the optimal solutions and the convergence speed are improved,thanks to the EDA-DP effectively overcomes the premature convergence problem.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第3期591-597,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60804022 60974050) 教育部新世纪优秀人才支持计划(No.NCET-08-0836) 江苏省自然科学基金(No.BK2008126) 高等学校博士学科点专项科研基金(No.20070290537 200802901506) 中国博士后科学基金特别资助(No.200902533)
关键词 分布估计算法 多样性 早熟收敛 混沌变异 estimation of distribution algorithm diversity premature convergence chaotic mutation
  • 相关文献

参考文献12

  • 1P Larranaga, J A Lozano. Estimation of distribution algorithms: a new tool for evolutionary computation[ M ]. Boston: Kluwer Academic Publishers, 2002.
  • 2周雅兰,王甲海,印鉴.一种基于分布估计的离散粒子群优化算法[J].电子学报,2008,36(6):1242-1248. 被引量:28
  • 3J M Pena,V Robles,P Larranaga, et al. GA-EDA: hybrid evolutionary algorithm using genetic and estimation of distribution algorithms[ A]. The 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems[ C ]. Heidelberg: Springer Berlin, 2004, 3029: 361 - 371.
  • 4J Sun, Q Zhang, E Tsang. DE/EDA: a new evolutionary algorithm for global optimisation[ J]. Information Sciences, 2005, 169(3 - 4) :249 - 262.
  • 5P Koumoutsakos, J Ocenasek, N Hansen, et al. A mixed bayesian optimization algorithm with variance adaptation[ A]. The 8th International Conference on Parallel Problem Solving from Nature[C]. Heidelberg: Springer Berlin, 2004,3242:352 - 361.
  • 6R E Leonardo, T R P. Aurora. An incremental approach for niching and building block detection via clustering [ A ]. Proceedings of the Seventh International Conference on InteUigent Systems Design and Applications [ C ] NJ: IEEE Piscataway, 2007 : 303 - 308.
  • 7W S Dong, X Yao. NichingEDA: utilizing the diversity inside a population of EDAs for continuous optimization [ A ]. IEEE Congress on Evolutionary Computation [ C ] NJ: IEEE Piscataway, 2008. 1260 - 1267.
  • 8J Madera, E Alba, A Ochoa. A parallel island model for estimation of distribution algorithms[A]. Towards a New Evolutionary Computation [ C ]. Heidelberg: Springer Berlin, 2006, (192) : 159 - 186.
  • 9R M Selvi,R Rajaram. Performance study of mutation operator in genetic algorithms on anticipatory scheduling [ A ]. Proceedings of the International Conference on Computational Intelligence and Multimedia Applications[ C] NJ: IEEE Piscataway, 2007:511 - 515.
  • 10袁晓辉,袁艳斌,王乘,张勇传.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712. 被引量:48

二级参考文献32

  • 1许晓晶,饶妮妮.一类改进遗传算法的图像信息恢复研究[J].电子学报,2004,32(7):1120-1123. 被引量:4
  • 2周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 3钟一文,蔡荣英.求解二次分配问题的离散粒子群优化算法[J].自动化学报,2007,33(8):871-874. 被引量:30
  • 4Prugel A. Modeling crossover-induced linkage in genetic algorithms [ J ]. IEEE Trans on Evolutionary computation,2001,5(4) :376 -387.
  • 5Richard M, Edwin R H. Empirical modeling of genetic algorithms [ J ]. Evolutionary computation, 2001,9 ( 4 ) :461 - 493.
  • 6Li J, Balaze M. A species conserving genetic algorithm for multimodal function optimization [ J ]. Evolutionary computation ,2002,10 ( 3 ) :207 - 234.
  • 7Yoon H,Moon B. An empirical study on the synergy of multiple crossover operators[J]. IEEE Trans on Evolutionary computation,2002,6(2):212 - 223.
  • 8Ahn C, Ramakrishna R. Elitism-based compact genetic algorithms[J]. IEEE Trans on Evolutionary computation ,2003,7(4):367 - 385.
  • 9Tsai J, Liu T. Hybrid taguchi-genetic algorithm for global numerical optimization [J]. IEEE Trans on Evolutionary Computation, 2004,8(4):365 - 377.
  • 10Yuan X, Yuan Y. A hybrid chaotic genetic algorithm for short-term hydro system scheduling [ J ]. Mathematics and Computers in Simulation,2002,59 ( 4 ) : 319 -327.

共引文献83

同被引文献188

引证文献15

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部